Advertisements
Advertisements
Question
Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).
Solution
f(x) = [x], x ∈ (−3, 2)
i.e., f(x) = − 3 for x ∈ (− 3, − 2)
= − 2 for x ∈ [− 2, − 1)
= − 1 for x ∈ [− 1, 0)
= 0 for x ∈ [0, 1)
= 1 for x ∈ [1, 2)
Consider continuity at x = − 2
`lim_(x -> -2^-) "f"(x) = lim_(x -> -2) (- 3)` = − 3
`lim_(x -> -2^+) "f"(x) = lim_(x -> -2) (- 2)` = − 2
∴ `lim_(x -> - 2^-) "f"(x) ≠ lim_(x -> - 2^+) "f"(x)`
∴ `lim_(x -> - 2) "f"(x)` does not exist
∴ f is discontinuous at x = − 2
Similarly, f is discontinuous at other integral values of x
i.e., − 1, 0, 1
Let a ∈ (− 3, − 2)
It is clear that
`lim_(x -> "a"^-) "f"(x) = lim_(x -> "a"^+) "f"(x)` = f(a) = − 3
∴ f is continuous in (− 3, − 2)
Similarly, f is continuous in (− 2, − 1), (− 1, 0), (0, 1), (1, 2)
Hence, f is discontinuous at x = − 2, − 1, 0, 1.
APPEARS IN
RELATED QUESTIONS
Examine the continuity of `"f"(x) {:(= sin x",", "for" x ≤ pi/4), (= cos x",", "for" x > pi/4):}} "at" x = pi/4`
Test the continuity of the following function at the point or interval indicated against them:
f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",", "for" 0 < x < 3"," x ≠ 2),(= 12",", "for" x = 2),(= (2 - 2x - x^2)/(x - 4)",", "for" 3 ≤ x < 4):}}` at x = 2
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)
If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).
If f(x) `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for" x ≠ 0),(= k",", "for" x = 0):}}` is continuous at x = 0, find k
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for" -3 ≤ x ≤ 2),(= |x - 5|",", "for" 2 < x ≤ 7):}`.
Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.
Select the correct answer from the given alternatives:
f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0
f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + 5x + 1"," , "for" 0 ≤ x ≤ 3),(= x^3 + x + 5"," , "for" 3 < x ≤ 6):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for" x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for" x ∈ [3, 6]):}`
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) = `((x + 3)(x^2 - 6x + 8))/(x^2 - x - 12)`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |2x - 3| ≥ 2),(= 3x + 2",", "for" 1/2 < x < 5/2):}`
Find f(a), if f is continuous at x = a where,
f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
Solve using intermediate value theorem:
Show that 5x − 6x = 0 has a root in [1, 2]
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.
If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.
If the function f(x) defined by
f(x) = `{{:(x sin 1/x",", "for" x = 0),(k",", "for" x = 0):}`
is continuous at x = 0, then k is equal to ______.
If f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4 "is continuous at" x = 4","),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
then ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.