Advertisements
Advertisements
Question
If f(x) `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for" x ≠ 0),(= k",", "for" x = 0):}}` is continuous at x = 0, find k
Solution
f(0) = k ...(Given) ...(1)
`lim_(x -> 0) "f"(x) = lim_(x -> 0) (5^x + 5^(-x) - 2)/(x^2)`
= `lim_(x -> 0) (5^x(5^x + 5^(-x) - 2))/(5^x * x^2)`
= `lim_(x -> 0) ((5^x)^2 + 1 - 2*5^x)/(5^x * x^2)`
= `lim_(x -> 0) (5^x - 1)^2/(5^x * x^2)`
= ` lim_(x -> 0) ((5^x - 1)/x)^2 1/5^x`
= `(lim_(x -> 0) (5^x - 1)/x)^2 xx 1/(lim_(x -> 0) 5^x`
= `(log5)^2 xx 1/5^0 ...[because lim_(x -> 0) ("a"^x - 1)/x = log "a"]`
= (log 5)2 ...(2)
Since f is continuous at x = 0,
f(0) = `lim_(x -> 0) "f"(x)`
∴∴k = (log 5)2 ...[By (1) and (2)]
APPEARS IN
RELATED QUESTIONS
Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)` for x ≠ 1
= 20 for x = 1, at x = 1
Examine the continuity of `f(x) = {:((x^2 - 9)/(x - 3)",", "for" x ≠ 3),(=8",", "for" x = 3):}}` at x = 3.
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",", "for" x ≠ 2),(= -24",", "for" x = 2):}}` at x = 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",", "for" x ≠ 0),(= 2",", "for" x = 0):}}` at x = 0.
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) = `(x^2 - 10x + 21)/(x - 7)`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= 4 + sin x",", "for" x < pi),(= 3 - cos x",", "for" x > pi):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(1 - cos2x)/sinx`, for x ≠ 0
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(x^2 - 1)/(x^3 + 1)` for x ≠ – 1
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",", "for" x ≠ 0),(= (log 2)^2/2",", "for" x = 0):}}` at x = 0.
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous :
f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",", "for" x ≠ 0),(= 3/4",", "for" x = 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= log_((1 + 3x)) (1 + 5x)",", "for" x > 0),(=(32^x - 1)/(8^x - 1)",", "for" x < 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= 3x + 2",", "for" -4 ≤ x ≤-2),(= 2x - 3";", "for" -2 < x ≤ 6):}`
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",", "for" x ≠ 0), (= "k"",", "for" x = 0):}}` is continuous at x = 0, find k
If f(x) `{:(= (sin2x)/(5x) - "a"",", "for" x > 0),(= 4 ",", "for" x = 0),(= x^2 + "b" - 3",", "for" x < 0):}}` is continuous at x = 0, find a and b
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) `{:(= x + 1",", "for" 1 < x < 3),(= x^2 + "p"x + "q"",", "for" |x - 2| ≥ 1):}`
Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Suppose f(x) `{:(= "p"x + 3",", "for" "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for" "b" < x ≤ "c"):}`
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.
f(b) = ______
`lim_(x -> "b"^+) "f"(x)` = _______
∴ pb + 3 = _______ − q
∴ p = `"_____"/"b"` is the required condition
Select the correct answer from the given alternatives:
If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for" x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for" 3 ≤ x ≤ 6"," x ≠ 5),(= 10",", "for" x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for" 6 < x ≤ 9):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (|x + 1|)/(2x^2 + x - 1)",", "for" x ≠ -1),(= 0",", "for" x = -1):}}` at x = – 1
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + x - 3,"," "for" x ∈ [ -5, -2)),(= x^2 - 5,"," "for" x ∈ (-2, 5]):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for" x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for" x ∈ [3, 6]):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
If f(x) = `{{:(tanx/x + secx",", x ≠ 0),(2",", x = 0):}`, then ______.
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.
If the function f(x) defined by
f(x) = `{{:(x sin 1/x",", "for" x = 0),(k",", "for" x = 0):}`
is continuous at x = 0, then k is equal to ______.