Advertisements
Advertisements
Question
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for" x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for" x ∈ [3, 6]):}`
Solution
For x ∈ [0, 3), f(x) = `(x^2 + x + 1)/(x + 1)`, being a rational function is continuous except when its denominator x + 1 = 0 i.e., at x = – 1, which does not belong to [0, 3)
∴ f is continuous on [0, 3).
For x ∈ [3, 6], f(x) = `(3x + 4)/(x^2 - 5)`, being a rational function is continuous except when its denominator x2 – 5 = 0 i.e., at x = `± sqrt(5)` But `± sqrt(5) ∉ [3, 6]`
∴ f is continuous on [0, 6] except possibly at x = 3
Continuity at x = 3
f(x) = `(x^2 + x + 1)/(x + 1)`, for x ∈ [0, 3)
∴ `lim_(x -> 3^-) "f"(x) = lim_(x -> 3) (x^2 + x + 1)/(x + 1)`
= `(lim_(x -> 3)(x^2 + x + 1))/(lim_(x -> 3) (x + 1))`
= `(9 + 3 + 1)/(3 + 1)`
= `13/4`
Also, f(x) = `(3x + 4)/(x^2 - 5)`, for x ∈ [3, 6]
∴ `lim_(x -> 3^+) "f"(x) = "f"(3) = (9 + 4)/(9 - 5) = 13/4`
∴ `"f"(3) = lim_(x -> 3^+) "f"(x) = lim_(x -> 3^-) "f"(x)`
∴ f is continuous at x = 3.
Hence, f is continuous on its domain [0, 6].
APPEARS IN
RELATED QUESTIONS
Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2
Examine whether the function is continuous at the points indicated against them:
f(x) `{:(= x^3 - 2x + 1",", "if" x ≤ 2),(= 3x - 2",", "if" x > 2):}}` at x = 2
Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= 4x + 1",", "for" x ≤ 8/3),(= (59 - 9x)/3 ",", "for" x > 8/3):}} "at" x = 8/3`
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",", "for" x ≠ 0),(= 2",", "for" x = 0):}}` at x = 0.
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= 4 + sin x",", "for" x < pi),(= 3 - cos x",", "for" x > pi):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0
If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).
If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",", "for" x ≠ 0), (= "k"",", "for" x = 0):}}` is continuous at x = 0, find k
If f(x) `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for" x ≠ 0),(= k",", "for" x = 0):}}` is continuous at x = 0, find k
For what values of a and b is the function
f(x) `{:(= (x^2 - 4)/(x - 2)",", "for" x < 2),(= "a"x^2 - "b"x + 3",", "for" 2 ≤ x < 3),(= 2x - "a" + "b"",", "for" x ≥ 3):}}` continuous for every x on R?
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1
Suppose f(x) `{:(= "p"x + 3",", "for" "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for" "b" < x ≤ "c"):}`
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.
f(b) = ______
`lim_(x -> "b"^+) "f"(x)` = _______
∴ pb + 3 = _______ − q
∴ p = `"_____"/"b"` is the required condition
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Select the correct answer from the given alternatives:
If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is
Select the correct answer from the given alternatives:
f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for" x ≠ 0),(= "k"",", "for" x = 0):}` is continuous at x = 0, then ‘k’ =
Select the correct answer from the given alternatives:
If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for" 3 ≤ x ≤ 6"," x ≠ 5),(= 10",", "for" x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for" 6 < x ≤ 9):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for" x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for" x = 1):}}` at x = 1
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) `{:(= x^2 + 2x + 5"," , "for" x ≤ 3),( = x^3 - 2x^2 - 5",", "for" x > 3):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for" x ≠ 2),(= "k"",", "for" x = 2):}}` at x = 2
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for" x < 0),(= (9)/(log2)",", "for" x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for" x > 0):}`
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |2x - 3| ≥ 2),(= 3x + 2",", "for" 1/2 < x < 5/2):}`
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
If f(x) is continuous at x = 3, where
f(x) = ax + 1, for x ≤ 3
= bx + 3, for x > 3 then.
If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at
= k, x = 0 is continuous x = 0. Then k = ______.
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If f(x) = `{(8-6x; 0<x≤2), (4x-12; 2<x≤3),(2x+10; 3<x≤6):}` then f(x) is ______
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.
If f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4 "is continuous at" x = 4","),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
then ______.
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.