English

Let f(x) = ax + b (where a and b are unknown) = x2 + 5 for x ∈ R Find the values of a and b, so that f(x) is continuous at x = 1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Let f(x) = ax + b (where a and b are unknown)

= x2 + 5 for x ∈ R

Find the values of a and b, so that f(x) is continuous at x = 1

Sum

Solution

f(x) `{:(= "a"x + "b", x < 1), (= x^2 + 5, x ≥ 1):}`

f(x) = x2 + 5

∴ f(x) = ax + b 

Where, a = 1, b = 5

∴ f(1) = 1 + 5 = 6

L.H.L. = `lim_(x -> 1^-) "f"(x) = lim_(x -> 1^-) ("a"x + "b")` = a + b

R.H.L. = `lim_(x -> 1^+) "f"(x) = lim_(x -> 1^+) (x^2 + 5)` = 1 + 5 = 6

given, f(x) is continuous at n = 1

∴ L.H.L. = R.H.L.

∴ a + b = 6 where, a, b ∈ R

shaalaa.com
Continuous and Discontinuous Functions
  Is there an error in this question or solution?
Chapter 8: Continuity - EXERCISE 8.1 [Page 175]

RELATED QUESTIONS

Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1,         for x ≤ 2
      = 3x − 2,                 for x > 2, at x = 2


Examine the continuity of `"f"(x)  {:(= sin x",",  "for"  x ≤ pi/4), (= cos x",",  "for"  x > pi/4):}}  "at"  x = pi/4`


Examine whether the function is continuous at the points indicated against them:

f(x)  `{:(= x^3 - 2x + 1",",  "if"  x ≤ 2),(= 3x - 2",",  "if"  x > 2):}}` at x = 2


Examine whether the function is continuous at the points indicated against them :

f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",",  "for"  x ≠ 1),(= 20",",  "for"  x = 1):}}` at x = 1


Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",",  "for"  x ≠ 2),(= 1/5",",  "for"  x = 2):}}`at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.


Test the continuity of the following function at the point or interval indicated against them:

f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",",  "for"  0 < x < 3","  x ≠ 2),(= 12",",  "for"  x = 2),(= (2 - 2x - x^2)/(x - 4)",",  "for"  3 ≤ x < 4):}}` at x = 2


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= 4 + sin x",",  "for"  x < pi),(= 3 - cos x",",  "for"  x > pi):}`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= (x^3 - 8)/(x^2 - 4)",",  "for"  x > 2),(= 3",",  "for"  x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",",  "for"  x < 2):}`


If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for"  x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`


If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).


Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for"  -3 ≤ x ≤ 2),(= |x - 5|",", "for"  2 < x ≤ 7):}`.


Discuss the continuity of f(x) at x = `pi/4` where, 

f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for"  x ≠ pi/4),(= 3/sqrt(2)",", "for"  x = pi/4):}`


Determine the values of p and q such that the following function is continuous on the entire real number line.

f(x) `{:(= x + 1",", "for"   1 < x < 3),(= x^2 + "p"x + "q"",", "for"  |x - 2| ≥ 1):}`


Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.


Suppose f(x) `{:(= "p"x + 3",", "for"  "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for"  "b" < x ≤ "c"):}`

Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.

f(b) = ______

`lim_(x -> "b"^+) "f"(x)` = _______

∴ pb + 3 = _______ − q

∴ p = `"_____"/"b"` is the required condition


Select the correct answer from the given alternatives:

f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]


Select the correct answer from the given alternatives:

f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for"  x ≠ 0),(= "k"",", "for"  x = 0):}` is continuous at x = 0, then ‘k’ =


Select the correct answer from the given alternatives:

If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for"  3 ≤ x ≤ 6","  x ≠ 5),(= 10",", "for"  x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for"  6 < x ≤ 9):}`


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + x - 3,","  "for"  x ∈ [ -5, -2)),(= x^2 - 5,","  "for"  x ∈ (-2, 5]):}`


Find f(a), if f is continuous at x = a where,

f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1


Solve using intermediate value theorem:

Show that 5x − 6x = 0 has a root in [1, 2]


Solve using intermediate value theorem:

Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.


Let f be the function defined by

f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`


Which of the following is not continuous for all x?


If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`

is continuous at x = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×