Advertisements
Advertisements
Question
If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for" x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`
Solution
f is given to be continuous at x = `pi/2`
∴ by defination,
`"f"(pi/2) = lim_(x -> pi/2) "f"(x)`
= `lim_(x -> pi/2) (sqrt(2 + sinx) - sqrt(3))/(cos^2x)`
= `lim_(x -> pi/2) (sqrt(2 + sinx) - sqrt(3))/(cos^2x) xx (sqrt(2 + sinx) + sqrt(3))/(sqrt(2 + sinx) + sqrt(3))`
= `lim_(x -> pi/2) ((2 + sin x) - 3)/((1 - sin^2x)(sqrt(2 + sin x) + sqrt(3))`
= `lim_(x -> pi/2) (-(1 - sin x))/((1 - sin x)(1 + sin x)(sqrt(2 + sin x) + sqrt(3))`
= `lim_(x -> pi/2) (-1)/((1 + sin x)[sqrt(2 + sinx) + sqrt(3)]) ...[because x -> pi/2, x ≠ pi/2 therefore sin x ≠ sin pi/2 = 1 therefore 1 - sin x ≠ 0]`
= `(lim_(x -> pi/2) ( - 1))/([lim_(x -> pi/2) (1 + sin x)] xx [lim_(x -> pi/2) (sqrt(2 + sin x) + sqrt(3)]`
= `(-1)/((1 + sin pi/2) (sqrt(2 + sin pi/2) + sqrt(3))`
= `(-1)/((1 + 1)(sqrt(2 + 1) + sqrt(3))`
∴ `"f"(pi/2) = (-1)/(4sqrt(3))`
APPEARS IN
RELATED QUESTIONS
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine the continuity of `"f"(x) {:(= sin x",", "for" x ≤ pi/4), (= cos x",", "for" x > pi/4):}} "at" x = pi/4`
Examine the continuity of `f(x) = {:((x^2 - 9)/(x - 3)",", "for" x ≠ 3),(=8",", "for" x = 3):}}` at x = 3.
Examine whether the function is continuous at the points indicated against them :
f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",", "for" x ≠ 1),(= 20",", "for" x = 1):}}` at x = 1
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) = `(x^2 - 10x + 21)/(x - 7)`
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0
If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).
If f(x) `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for" x ≠ 0),(= k",", "for" x = 0):}}` is continuous at x = 0, find k
Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for" -3 ≤ x ≤ 2),(= |x - 5|",", "for" 2 < x ≤ 7):}`.
Discuss the continuity of f(x) at x = `pi/4` where,
f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for" x ≠ pi/4),(= 3/sqrt(2)",", "for" x = pi/4):}`
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1
Select the correct answer from the given alternatives:
If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is
Select the correct answer from the given alternatives:
If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for" 3 ≤ x ≤ 6"," x ≠ 5),(= 10",", "for" x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for" 6 < x ≤ 9):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 - 2x + 5",", "for" 0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for" 2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for" 4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for" x = 5):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0
f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (|x + 1|)/(2x^2 + x - 1)",", "for" x ≠ -1),(= 0",", "for" x = -1):}}` at x = – 1
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = [x + 1] for x ∈ [−2, 2)
Where [*] is greatest integer function.
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Find f(a), if f is continuous at x = a where,
f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.
For what value of k, the function defined by
f(x) = `{{:((log(1 + 2x)sin^0)/x^2",", "for" x ≠ 0),(k",", "for" x = 0):}`
is continuous at x = 0 ?
The function f(x) = x – |x – x2| is ______.
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.