English

Select the correct answer from the given alternatives: If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from the given alternatives:

If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at

Options

  • x = –1, 0, 1, 2,

  • x = –1, 0, 1

  • x = 0, 1

  • x = 2

MCQ

Solution

If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at x = 0, 1

shaalaa.com
Continuous and Discontinuous Functions
  Is there an error in this question or solution?
Chapter 8: Continuity - MISCELLANEOUS EXERCISE-8 [Page 177]

APPEARS IN

RELATED QUESTIONS

Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1,         for x ≤ 2
      = 3x − 2,                 for x > 2, at x = 2


Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1


Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2


Examine the continuity of `f(x) = {:((x^2 - 9)/(x  - 3)",",  "for"  x ≠ 3),(=8",",  "for"  x = 3):}}` at x = 3.


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=("e"^(1/x) - 1)/("e"^(1/x) + 1)",",  "for"  x ≠ 0),(= 1",", "for"  x = 0):}}` at x = 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


For what values of a and b is the function

f(x) `{:(= "a"x + 2"b" + 18",",  "for"  x ≤ 0),(= x^2 + 3"a" - "b"",",  "for"  0 < x ≤ 2),(= 8x - 2",",  "for"  x > 2):}}` continuous for every x?


Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for"  -3 ≤ x ≤ 2),(= |x - 5|",", "for"  2 < x ≤ 7):}`.


Determine the values of p and q such that the following function is continuous on the entire real number line.

f(x) `{:(= x + 1",", "for"   1 < x < 3),(= x^2 + "p"x + "q"",", "for"  |x - 2| ≥ 1):}`


Suppose f(x) `{:(= "p"x + 3",", "for"  "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for"  "b" < x ≤ "c"):}`

Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.

f(b) = ______

`lim_(x -> "b"^+) "f"(x)` = _______

∴ pb + 3 = _______ − q

∴ p = `"_____"/"b"` is the required condition


Select the correct answer from the given alternatives:

If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for"  x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =


Select the correct answer from the given alternatives:

f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]


Select the correct answer from the given alternatives:

If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0

f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (|x + 1|)/(2x^2 + x - 1)",", "for"  x ≠ -1),(= 0",", "for"  x = -1):}}` at x = – 1


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 + x + 1",", "for"  |x - 3| ≥ 2),(= x^2 + 3",", "for"  1 < x < 5):}`


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + x - 3,","  "for"  x ∈ [ -5, -2)),(= x^2 - 5,","  "for"  x ∈ (-2, 5]):}`


Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:

f(x) `{:(= x^2 + 2x + 5"," , "for"  x ≤ 3),( = x^3 - 2x^2 - 5",", "for"  x > 3):}`


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for"  x < 0),(= (9)/(log2)",", "for"  x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for"  x > 0):}`


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= "a"x^2 + "b"x + 1",", "for"  |2x - 3| ≥ 2),(= 3x + 2",", "for"  1/2 < x < 5/2):}`


Find f(a), if f is continuous at x = a where,

f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π


Solve using intermediate value theorem:

Show that 5x − 6x = 0 has a root in [1, 2]


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `{:{(tan^-1|x|; "when"  x ≠ 0), (pi/4;  "when"  x = 0):}`, then ______ 


If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at

= k, x = 0 is continuous x = 0. Then k = ______.


Let f be the function defined by

f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`


Which of the following is not continuous for all x?


If f(x) = `{{:((x - 4)/(|x - 4|) + a",",  "for"  x < 4),(a + b",",  "for"  x = 4  "is continuous at"  x = 4","),((x - 4)/(|x - 4|) + b",",  "for"  x > 4):}`

then ______.


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×