English

For what values of a and b is the function f(x) =ax+2b+18, for x≤0=x2+3a-b, for 0<x≤2=8x-2, for x>2} continuous for every x? - Mathematics and Statistics

Advertisements
Advertisements

Question

For what values of a and b is the function

f(x) `{:(= "a"x + 2"b" + 18",",  "for"  x ≤ 0),(= x^2 + 3"a" - "b"",",  "for"  0 < x ≤ 2),(= 8x - 2",",  "for"  x > 2):}}` continuous for every x?

Sum

Solution

If f is continuous for every x, then f must be continuous at x = 0 and x = 2.

Continuity at x = 0

Since f is continuous at x = 0,

`lim_(x -> 0) "f"(x)` exists

∴ `lim_(x -> 0^+) "f"(x) = lim_(x -> 0^-) "f"(x)`

∴ `lim_(x -> 0) (x^2 + 3"a" - "b") =  lim_(x -> 0) ("a"x + 2"b" + 18)`

∴ 0 + 3a – b = 0 + 2b + 18

∴ 3a – 3b = 18

∴ a – b = 6   ...(1)

Continuity at x = 2

Since f is continuous at x = 2,

`lim_(x -> 2) "f"(x)` exists

∴ `lim_(x -> 2^+) "f"(x) = lim_(x -> 2^-) "f"(x)`

∴ `lim_(x -> 2) (8x - 2) =  lim_(x -> 2) (x^2 + 3"a" - "b")` 

∴ 8(2) – 2 = 4 + 3a – b

∴ 3a – b = 10

∴ 3a – (a – 6) = 10   ...[By (1)]

∴ 2a = 4

∴ a = 2

Substituting a = 2 in (1), we get,

∴ 2 – b = 6

∴ b = – 4

Hence, a = 2, b = – 4.

shaalaa.com
Continuous and Discontinuous Functions
  Is there an error in this question or solution?
Chapter 8: Continuity - EXERCISE 8.1 [Page 174]

RELATED QUESTIONS

Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2


Examine the continuity of `f(x) = {:((x^2 - 9)/(x  - 3)",",  "for"  x ≠ 3),(=8",",  "for"  x = 3):}}` at x = 3.


Examine whether the function is continuous at the points indicated against them:

f(x)  `{:(= x^3 - 2x + 1",",  "if"  x ≤ 2),(= 3x - 2",",  "if"  x > 2):}}` at x = 2


Examine whether the function is continuous at the points indicated against them :

f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",",  "for"  x ≠ 1),(= 20",",  "for"  x = 1):}}` at x = 1


Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= 4x + 1",",  "for"  x ≤  8/3),(= (59 - 9x)/3 ",",  "for"  x > 8/3):}}  "at"  x = 8/3`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(1 - cos2x)/sinx`, for x ≠ 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= log_((1 + 3x)) (1 + 5x)",", "for"  x > 0),(=(32^x - 1)/(8^x - 1)",",  "for"  x < 0):}}` at x = 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= (x^3 - 8)/(x^2 - 4)",",  "for"  x > 2),(= 3",",  "for"  x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",",  "for"  x < 2):}`


If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for"  x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`


If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",",  "for"  x ≠ 0), (= "k"",",  "for"  x = 0):}}` is continuous at x = 0, find k


Select the correct answer from the given alternatives:

If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.


Select the correct answer from the given alternatives:

If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for"  3 ≤ x ≤ 6","  x ≠ 5),(= 10",", "for"  x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for"  6 < x ≤ 9):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 - 2x + 5",", "for"  0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for"  2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for"  4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for"  x = 5):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0

f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + x - 3,","  "for"  x ∈ [ -5, -2)),(= x^2 - 5,","  "for"  x ∈ (-2, 5]):}`


Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:

f(x) `{:(= x^2 + 2x + 5"," , "for"  x ≤ 3),( = x^3 - 2x^2 - 5",", "for"  x > 3):}`


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for"  x < 0),(= (9)/(log2)",", "for"  x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for"  x > 0):}`


Find f(a), if f is continuous at x = a where,

f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `{(8-6x;   0<x≤2), (4x-12;    2<x≤3),(2x+10;    3<x≤6):}` then f(x) is ______ 


If function `f(x)={((x^2-9)/(x-3), ",when "xne3),(k, ",when "x =3):}` is continuous at x = 3, then the value of k will be ______.


If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?


If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for"  x ≠ 0),(K",", "for"  x = 0):}`

is continuous at x = 0, then K is ______.


The function f(x) = x – |x – x2| is ______.


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×