English

Test the continuity of the following function at the point or interval indicated against them : f(x) =(27-2x)13-39-3(243+5x)15, for x≠0=2, for x=0} at x = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.

Sum

Solution

f(0) = 2     ...(Given)

`lim_(x -> 0) "f"(x) =  lim_(x -> 0) ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))`

= `lim_(x -> 0) ((27 - 2x)^(1/3) - 3)/(-3[(243 + 5x)^(1/5) - 3]`

= `(-1)/(3)  lim_(x -> 0) ((27 - 2x)^(1/3) - (27)^(1/3))/((243 + 5x)^(1/5) - (243)^(1/5))`

= `(-1)/(3) lim_(x -> 0)  (((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27) xx [(27 - 2x) - 27])/(((243 + 5x)^(1/5) - (243)^(1/5))/((243 + 5x) - 243) xx [(243 + 5x) - 243])`

...`[("As"  x -> 0"," -2x -> 0 and 5x -> 0),(therefore (27 - 2x) - 27 -> 0 and (243 + 5x) - 243 -> 0),(therefore (27 - 2x) - 27 ≠ 0 and (243 + 5x) - 243 ≠ 0)]`

= `(-1)/(3) (lim_(x -> 0) ((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27) xx (-2x))/(lim_(x -> 0) ((243 + 5x)^(1/3) - (243)^(1/5))/((243 + 5x) - 243) xx (5x)`

= `(-1)/(3) xx (-2)/(5) xx (lim_(x -> 0)((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27))/(lim_(x -> 0) ((243 + 5x)^(1/5) - (243)^(1/5))/((243 + 5x) - 243)`  ...[∵  x  → 0, x ≠ 0]

= `2/15 xx (1/3(27)^((-2)/3))/(1/5(243)^((-4)/5))  ...[because  lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`

= `2/15 xx 5/3 xx ((3^3)^((-2)/3))/((3^5)^((-4)/5))`

= `2/9 xx (3)^(-2)/(3)^(-4)`

= `2/9 xx (3)^2`

= 2

∴ `lim_(x -> 0) "f"(x)` = f(0)

∴ f(x) is continuous at x = 0

shaalaa.com
Continuous and Discontinuous Functions
  Is there an error in this question or solution?
Chapter 8: Continuity - EXERCISE 8.1 [Page 173]

RELATED QUESTIONS

Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1


Examine the continuity of `"f"(x)  {:(= sin x",",  "for"  x ≤ pi/4), (= cos x",",  "for"  x > pi/4):}}  "at"  x = pi/4`


Examine whether the function is continuous at the points indicated against them :

f(x) `{:(= x/(tan3x) + 2",",   "for"  x < 0),(= 7/3",",  "for"  x ≥ 0):}}  "at"  x = 0`


Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Test the continuity of the following function at the point or interval indicated against them:

f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",",  "for"  0 < x < 3","  x ≠ 2),(= 12",",  "for"  x = 2),(= (2 - 2x - x^2)/(x - 4)",",  "for"  3 ≤ x < 4):}}` at x = 2


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(x^2 - 1)/(x^3 + 1)` for x ≠ – 1


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",",  "for"  x ≠ 0),(= (log 2)^2/2",",  "for"  x = 0):}}` at x = 0.


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0


If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)


If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",",  "for"  x ≠ 0), (= "k"",",  "for"  x = 0):}}` is continuous at x = 0, find k


If f(x)  `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for"  x ≠ 0),(= k",",  "for"  x = 0):}}` is continuous at x = 0, find k


For what values of a and b is the function

f(x) `{:(= "a"x + 2"b" + 18",",  "for"  x ≤ 0),(= x^2 + 3"a" - "b"",",  "for"  0 < x ≤ 2),(= 8x - 2",",  "for"  x > 2):}}` continuous for every x?


Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for"  -3 ≤ x ≤ 2),(= |x - 5|",", "for"  2 < x ≤ 7):}`.


Discuss the continuity of f(x) at x = `pi/4` where, 

f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for"  x ≠ pi/4),(= 3/sqrt(2)",", "for"  x = pi/4):}`


Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.


Let f(x) = ax + b (where a and b are unknown)

= x2 + 5 for x ∈ R

Find the values of a and b, so that f(x) is continuous at x = 1


Select the correct answer from the given alternatives:

f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]


Select the correct answer from the given alternatives:

If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (|x + 1|)/(2x^2 + x - 1)",", "for"  x ≠ -1),(= 0",", "for"  x = -1):}}` at x = – 1


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + 5x + 1"," , "for"  0 ≤ x ≤ 3),(= x^3 + x + 5"," , "for"  3 < x ≤ 6):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for"  x ≠ 2),(= "k"",", "for"  x = 2):}}` at x = 2


Solve using intermediate value theorem:

Show that 5x − 6x = 0 has a root in [1, 2]


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `{:{(tan^-1|x|; "when"  x ≠ 0), (pi/4;  "when"  x = 0):}`, then ______ 


If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at

= k, x = 0 is continuous x = 0. Then k = ______.


Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______


If f(x) = `{(8-6x;   0<x≤2), (4x-12;    2<x≤3),(2x+10;    3<x≤6):}` then f(x) is ______ 


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.


If f(x) = `{{:(x, "for"  x ≤ 0),(0,
"for"  x > 0):}`, then f(x) at x = 0 is ______.


If the function f(x) defined by

f(x) = `{{:(x sin  1/x",", "for"  x = 0),(k",", "for"  x = 0):}`

is continuous at x = 0, then k is equal to ______.


Which of the following is not continuous for all x?


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`

is continuous at x = 0, then the value of k is ______.


`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×