Advertisements
Advertisements
प्रश्न
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",", "for" x ≠ 0),(= 2",", "for" x = 0):}}` at x = 0.
उत्तर
f(0) = 2 ...(Given)
`lim_(x -> 0) "f"(x) = lim_(x -> 0) ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))`
= `lim_(x -> 0) ((27 - 2x)^(1/3) - 3)/(-3[(243 + 5x)^(1/5) - 3]`
= `(-1)/(3) lim_(x -> 0) ((27 - 2x)^(1/3) - (27)^(1/3))/((243 + 5x)^(1/5) - (243)^(1/5))`
= `(-1)/(3) lim_(x -> 0) (((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27) xx [(27 - 2x) - 27])/(((243 + 5x)^(1/5) - (243)^(1/5))/((243 + 5x) - 243) xx [(243 + 5x) - 243])`
...`[("As" x -> 0"," -2x -> 0 and 5x -> 0),(therefore (27 - 2x) - 27 -> 0 and (243 + 5x) - 243 -> 0),(therefore (27 - 2x) - 27 ≠ 0 and (243 + 5x) - 243 ≠ 0)]`
= `(-1)/(3) (lim_(x -> 0) ((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27) xx (-2x))/(lim_(x -> 0) ((243 + 5x)^(1/3) - (243)^(1/5))/((243 + 5x) - 243) xx (5x)`
= `(-1)/(3) xx (-2)/(5) xx (lim_(x -> 0)((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27))/(lim_(x -> 0) ((243 + 5x)^(1/5) - (243)^(1/5))/((243 + 5x) - 243)` ...[∵ x → 0, x ≠ 0]
= `2/15 xx (1/3(27)^((-2)/3))/(1/5(243)^((-4)/5)) ...[because lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `2/15 xx 5/3 xx ((3^3)^((-2)/3))/((3^5)^((-4)/5))`
= `2/9 xx (3)^(-2)/(3)^(-4)`
= `2/9 xx (3)^2`
= 2
∴ `lim_(x -> 0) "f"(x)` = f(0)
∴ f(x) is continuous at x = 0
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)` for x ≠ 1
= 20 for x = 1, at x = 1
Examine whether the function is continuous at the points indicated against them :
f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",", "for" x ≠ 1),(= 20",", "for" x = 1):}}` at x = 1
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",", "for" x ≠ 2),(= -24",", "for" x = 2):}}` at x = 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= 4x + 1",", "for" x ≤ 8/3),(= (59 - 9x)/3 ",", "for" x > 8/3):}} "at" x = 8/3`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) = `(x^2 - 10x + 21)/(x - 7)`
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(1 - cos2x)/sinx`, for x ≠ 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= log_((1 + 3x)) (1 + 5x)",", "for" x > 0),(=(32^x - 1)/(8^x - 1)",", "for" x < 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0
If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for" x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`
If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",", "for" x ≠ 0), (= "k"",", "for" x = 0):}}` is continuous at x = 0, find k
Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for" -3 ≤ x ≤ 2),(= |x - 5|",", "for" 2 < x ≤ 7):}`.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1
Select the correct answer from the given alternatives:
f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]
Select the correct answer from the given alternatives:
If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.
Select the correct answer from the given alternatives:
If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 - 2x + 5",", "for" 0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for" 2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for" 4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for" x = 5):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0
f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= (|x + 1|)/(2x^2 + x - 1)",", "for" x ≠ -1),(= 0",", "for" x = -1):}}` at x = – 1
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + 5x + 1"," , "for" 0 ≤ x ≤ 3),(= x^3 + x + 5"," , "for" 3 < x ≤ 6):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for" x < 0),(= (9)/(log2)",", "for" x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for" x > 0):}`
If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.
If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?
If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for" x ≠ 0),(K",", "for" x = 0):}`
is continuous at x = 0, then K is ______.
For what value of k, the function defined by
f(x) = `{{:((log(1 + 2x)sin^0)/x^2",", "for" x ≠ 0),(k",", "for" x = 0):}`
is continuous at x = 0 ?
If f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4 "is continuous at" x = 4","),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
then ______.
For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.