हिंदी

Test the continuity of the following function at the point or interval indicated against them : f(x) =(27-2x)13-39-3(243+5x)15, for x≠0=2, for x=0} at x = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.

योग

उत्तर

f(0) = 2     ...(Given)

`lim_(x -> 0) "f"(x) =  lim_(x -> 0) ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))`

= `lim_(x -> 0) ((27 - 2x)^(1/3) - 3)/(-3[(243 + 5x)^(1/5) - 3]`

= `(-1)/(3)  lim_(x -> 0) ((27 - 2x)^(1/3) - (27)^(1/3))/((243 + 5x)^(1/5) - (243)^(1/5))`

= `(-1)/(3) lim_(x -> 0)  (((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27) xx [(27 - 2x) - 27])/(((243 + 5x)^(1/5) - (243)^(1/5))/((243 + 5x) - 243) xx [(243 + 5x) - 243])`

...`[("As"  x -> 0"," -2x -> 0 and 5x -> 0),(therefore (27 - 2x) - 27 -> 0 and (243 + 5x) - 243 -> 0),(therefore (27 - 2x) - 27 ≠ 0 and (243 + 5x) - 243 ≠ 0)]`

= `(-1)/(3) (lim_(x -> 0) ((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27) xx (-2x))/(lim_(x -> 0) ((243 + 5x)^(1/3) - (243)^(1/5))/((243 + 5x) - 243) xx (5x)`

= `(-1)/(3) xx (-2)/(5) xx (lim_(x -> 0)((27 - 2x)^(1/3) - 27^(1/3))/((27 - 2x) - 27))/(lim_(x -> 0) ((243 + 5x)^(1/5) - (243)^(1/5))/((243 + 5x) - 243)`  ...[∵  x  → 0, x ≠ 0]

= `2/15 xx (1/3(27)^((-2)/3))/(1/5(243)^((-4)/5))  ...[because  lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`

= `2/15 xx 5/3 xx ((3^3)^((-2)/3))/((3^5)^((-4)/5))`

= `2/9 xx (3)^(-2)/(3)^(-4)`

= `2/9 xx (3)^2`

= 2

∴ `lim_(x -> 0) "f"(x)` = f(0)

∴ f(x) is continuous at x = 0

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - EXERCISE 8.1 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
EXERCISE 8.1 | Q 5) (iv) | पृष्ठ १७३

संबंधित प्रश्न

Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1


Examine whether the function is continuous at the points indicated against them :

f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",",  "for"  x ≠ 1),(= 20",",  "for"  x = 1):}}` at x = 1


Examine whether the function is continuous at the points indicated against them :

f(x) `{:(= x/(tan3x) + 2",",   "for"  x < 0),(= 7/3",",  "for"  x ≥ 0):}}  "at"  x = 0`


Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= 4x + 1",",  "for"  x ≤  8/3),(= (59 - 9x)/3 ",",  "for"  x > 8/3):}}  "at"  x = 8/3`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Identify the discontinuity for the following function as either a jump or a removable discontinuity.

f(x) `{:(= x^2 + 3x - 2",",  "for"  x ≤ 4),(= 5x + 3",",  "for"  x > 4):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(1 - cos2x)/sinx`, for x ≠ 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= log_((1 + 3x)) (1 + 5x)",", "for"  x > 0),(=(32^x - 1)/(8^x - 1)",",  "for"  x < 0):}}` at x = 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0


If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for"  x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`


If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",",  "for"  x ≠ 0), (= "k"",",  "for"  x = 0):}}` is continuous at x = 0, find k


Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for"  -3 ≤ x ≤ 2),(= |x - 5|",", "for"  2 < x ≤ 7):}`.


Let f(x) = ax + b (where a and b are unknown)

= x2 + 5 for x ∈ R

Find the values of a and b, so that f(x) is continuous at x = 1


Select the correct answer from the given alternatives:

f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]


Select the correct answer from the given alternatives:

If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.


Select the correct answer from the given alternatives:

If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 - 2x + 5",", "for"  0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for"  2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for"  4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for"  x = 5):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0

f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (|x + 1|)/(2x^2 + x - 1)",", "for"  x ≠ -1),(= 0",", "for"  x = -1):}}` at x = – 1


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + 5x + 1"," , "for"  0 ≤ x ≤ 3),(= x^3 + x + 5"," , "for"  3 < x ≤ 6):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for"  x ≠ 0),(= 2/3",", "for"  x = 0):}}` at x = 0


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for"  x < 0),(= (9)/(log2)",", "for"  x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for"  x > 0):}`


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `{:{(tan^-1|x|; "when"  x ≠ 0), (pi/4;  "when"  x = 0):}`, then ______ 


Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______


If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.


If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?


If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for"  x ≠ 0),(K",", "for"  x = 0):}`

is continuous at x = 0, then K is ______.


For what value of k, the function defined by

f(x) = `{{:((log(1 + 2x)sin^0)/x^2",", "for"  x ≠ 0),(k",", "for"  x = 0):}`

is continuous at x = 0 ?


If f(x) = `{{:((x - 4)/(|x - 4|) + a",",  "for"  x < 4),(a + b",",  "for"  x = 4  "is continuous at"  x = 4","),((x - 4)/(|x - 4|) + b",",  "for"  x > 4):}`

then ______.


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×