हिंदी

Discuss the continuity of the following function at the point(s) or on the interval indicated against them: f(x) = cos4x-cos9x1-cosx, for x ≠ 0 f(0) = 6815, at x = 0 on -π2≤x≤π2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0

f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`

योग

उत्तर

The domain of f(x) is `[- pi/2, pi/2]`

i. For `[- pi/2, pi/2] - {0}`

f(x) = `(cos4x - cos9x)/(1 - cosx)`

It is a rational function and is continuous everwhere except at points where its denominator becomes zero.

Denominator becomes zero when cos x = 1

i.e. x = 0

But x = 0 does not lie in the interval

∴ f(x) is continuous at all points in `[- pi/2, pi/2] - {0}`

ii. For continuity at x = 0

f(0) = `68/15`

`lim_(x -> 0) "f"(x) =  lim_(x -> 0) (cos4x - cos9x)/(1 - cosx)`

= `lim_(x -> 0) (2sin ((4x + 9x)/2) * sin((9x - 4x)/2))/(2sin^2  x/2)`

= `lim_(x -> 0) (sin((13x)/2)* sin((5x)/(2)))/(sin  x/2)^2`

= `lim_(x -> 0) [((sin((13x)/2) * sin ((5x)/2))/(x^2))/((sin  x/2)^2/(x^2))]   ...[("Divide numerator and denominator by"  x^2),("As"  x -> 0","  x ≠ 0 therefore x^2 ≠0)]`

= `(lim_(x -> 0) sin((13x)/2)/x * (sin ((5x)/2))/x)/(lim_(x -> 0) ((sin  x/2)/x)^2`

= `(lim_(x -> 0) sin((13x)/2)/((13x)/2) xx 13/2 * lim_(x -> 0) sin ((5x)/2)/((5x)/2) xx 5/2)/(lim_(x -> 0) ((sin  x/2)/(x/2))^2 xx 1/4`

= `(1 xx 13/2 xx 1 xx 5/2)/((1)^2 xx 1/4)  ...[(because  x -> 0","  (13x)/2 -> 0),((5x)/2 -> 0  "and" lim_(theta -> 0)  sintheta/theta = 1)]`

= 65

∴ `lim_(x -> 0) "f"(x) ≠ "f"(0)`

∴ f(x) is discontinuous at x = 0

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - MISCELLANEOUS EXERCISE-8 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
MISCELLANEOUS EXERCISE-8 | Q (II) (3) | पृष्ठ १७७

संबंधित प्रश्न

Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(1 - cos2x)/sinx`, for x ≠ 0


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=("e"^(1/x) - 1)/("e"^(1/x) + 1)",",  "for"  x ≠ 0),(= 1",", "for"  x = 0):}}` at x = 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",",  "for"  x ≠ 0), (= "k"",",  "for"  x = 0):}}` is continuous at x = 0, find k


Determine the values of p and q such that the following function is continuous on the entire real number line.

f(x) `{:(= x + 1",", "for"   1 < x < 3),(= x^2 + "p"x + "q"",", "for"  |x - 2| ≥ 1):}`


Suppose f(x) `{:(= "p"x + 3",", "for"  "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for"  "b" < x ≤ "c"):}`

Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.

f(b) = ______

`lim_(x -> "b"^+) "f"(x)` = _______

∴ pb + 3 = _______ − q

∴ p = `"_____"/"b"` is the required condition


Select the correct answer from the given alternatives:

f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for"  x ≠ pi/2),(= log sqrt(2)",", "for"  x = pi/2):}`


Select the correct answer from the given alternatives:

If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for"  x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =


Select the correct answer from the given alternatives:

If f(x) `{:(= "a"x^2 + "b"x + 1",", "for"  |x −1| ≥ 3), (= 4x + 5",", "for"  -2 < x < 4):}` is continuous everywhere then,


Select the correct answer from the given alternatives:

f(x) `{:(= (32^x - 8^x - 4^x + 1)/(4^x - 2^(x + 1) + 1)",", "for"  x ≠ 0),(= "k""," , "for"  x = 0):}` is continuous at x = 0, then value of ‘k’ is


Select the correct answer from the given alternatives:

If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for"  3 ≤ x ≤ 6","  x ≠ 5),(= 10",", "for"  x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for"  6 < x ≤ 9):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = [x + 1] for x ∈ [−2, 2)

Where [*] is greatest integer function.


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + x - 3,","  "for"  x ∈ [ -5, -2)),(= x^2 - 5,","  "for"  x ∈ (-2, 5]):}`


Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:

f(x) `{:(= x^2 + 2x + 5"," , "for"  x ≤ 3),( = x^3 - 2x^2 - 5",", "for"  x > 3):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for"  x ≠ 0),(= 2/3",", "for"  x = 0):}}` at x = 0


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= "a"x^2 + "b"x + 1",", "for"  |2x - 3| ≥ 2),(= 3x + 2",", "for"  1/2 < x < 5/2):}`


Find f(a), if f is continuous at x = a where,

f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at

= k, x = 0 is continuous x = 0. Then k = ______.


If f(x) = `{(8-6x;   0<x≤2), (4x-12;    2<x≤3),(2x+10;    3<x≤6):}` then f(x) is ______ 


If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for"  x ≠ 0),(K",", "for"  x = 0):}`

is continuous at x = 0, then K is ______.


The function f(x) = x – |x – x2| is ______.


If f(x) = `{{:((x - 4)/(|x - 4|) + a",",  "for"  x < 4),(a + b",",  "for"  x = 4  "is continuous at"  x = 4","),((x - 4)/(|x - 4|) + b",",  "for"  x > 4):}`

then ______.


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×