हिंदी

Discuss the continuity of the following function at the point(s) or on the interval indicated against them: f(x) =x3-3x-10x-5,for 3≤x≤6, x≠5=10,for x=5=x2-3x-10x-5,for 6<x≤9 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for"  3 ≤ x ≤ 6","  x ≠ 5),(= 10",", "for"  x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for"  6 < x ≤ 9):}`

योग

उत्तर

`(x^2 - 3x - 10)/(x - 5)` is not defined at x = 5

∴ f(x) = `(x^2 - 3x - 10)/(x - 5)` where x ∈ [3, 5) ∪ (5, 6]

We can write f(x) explicitly, as follows:

f(x) `{:(=(x^2 - 3x - 10)/(x - 5),","  3 ≤ x < 5),(= 10, ","  x = 5),(= (x^2 - 3x - 10)/(x - 5), ","  5 < x ≤ 6),(= (x^2 - 3x - 10)/(x - 5), ","  6 < x ≤ 9):}`

∵ x2 – 3x – 10 = (x – 5) (x + 2)

∴ f(x) `{:(= x + 2",", 3 < x < 5),(= 10",", x = 5),(= x + 2",", 5 < x):}`

f(5) = 10

`lim_(x -> 5^-) "f"(x) = lim_(x -> 5^-) (x + 2)` = 5 + 2 = 7

`lim_(x -> 5^+) "f"(x) = lim_(x -> 5^+) (x + 2)` = 5 + 2 = 7

∴ f(5) = `lim_(x -> 5) "f"(x)`

∴ f(x) is continuous on its domain except at x = 5

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - MISCELLANEOUS EXERCISE-8 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
MISCELLANEOUS EXERCISE-8 | Q (II) (1) | पृष्ठ १७७

संबंधित प्रश्न

Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1,         for x ≤ 2
      = 3x − 2,                 for x > 2, at x = 2


Examine the continuity of `"f"(x)  {:(= sin x",",  "for"  x ≤ pi/4), (= cos x",",  "for"  x > pi/4):}}  "at"  x = pi/4`


Examine the continuity of `f(x) = {:((x^2 - 9)/(x  - 3)",",  "for"  x ≠ 3),(=8",",  "for"  x = 3):}}` at x = 3.


Examine whether the function is continuous at the points indicated against them :

f(x) `{:( = (x^2 + 18x - 19)/(x - 1)",",  "for"  x ≠ 1),(= 20",",  "for"  x = 1):}}` at x = 1


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.


Identify the discontinuity for the following function as either a jump or a removable discontinuity.

f(x) `{:(= x^2 + 3x - 2",",  "for"  x ≤ 4),(= 5x + 3",",  "for"  x > 4):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= 4 + sin x",",  "for"  x < pi),(= 3 - cos x",",  "for"  x > pi):}`


Discuss the continuity of the following function at the point indicated against them :

f(x) = `{:(=( sqrt(3) - tanx)/(pi - 3x)",", x ≠ pi/3),(= 3/4",", x = pi/3):}}  "at"  x = pi/3`


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous :

f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",",   "for"  x ≠ 0),(= 3/4",",   "for"  x = 0):}}` at x = 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= (x^3 - 8)/(x^2 - 4)",",  "for"  x > 2),(= 3",",  "for"  x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",",  "for"  x < 2):}`


If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).


If f(x)  `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for"  x ≠ 0),(= k",",  "for"  x = 0):}}` is continuous at x = 0, find k


If f(x) `{:(= (sin2x)/(5x) - "a"",", "for"  x > 0),(= 4 ",", "for"  x = 0),(= x^2 + "b" - 3",", "for"  x < 0):}}` is continuous at x = 0, find a and b


For what values of a and b is the function

f(x) `{:(= "a"x + 2"b" + 18",",  "for"  x ≤ 0),(= x^2 + 3"a" - "b"",",  "for"  0 < x ≤ 2),(= 8x - 2",",  "for"  x > 2):}}` continuous for every x?


For what values of a and b is the function

f(x) `{:(= (x^2 - 4)/(x - 2)",", "for"  x < 2),(= "a"x^2 - "b"x + 3",", "for"  2 ≤ x < 3),(= 2x - "a" + "b"",", "for"  x ≥ 3):}}` continuous for every x on R?


Select the correct answer from the given alternatives:

f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for"  x ≠ pi/2),(= log sqrt(2)",", "for"  x = pi/2):}`


Select the correct answer from the given alternatives:

If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for"  x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =


Select the correct answer from the given alternatives:

f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0

f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for"  x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for"  x = 1):}}` at x = 1


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = [x + 1] for x ∈ [−2, 2)

Where [*] is greatest integer function.


Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:

f(x) `{:(= x^2 + 2x + 5"," , "for"  x ≤ 3),( = x^3 - 2x^2 - 5",", "for"  x > 3):}`


Solve using intermediate value theorem:

Show that 5x − 6x = 0 has a root in [1, 2]


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `{(8-6x;   0<x≤2), (4x-12;    2<x≤3),(2x+10;    3<x≤6):}` then f(x) is ______ 


If function `f(x)={((x^2-9)/(x-3), ",when "xne3),(k, ",when "x =3):}` is continuous at x = 3, then the value of k will be ______.


If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.


If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for"  x ≠ 0),(K",", "for"  x = 0):}`

is continuous at x = 0, then K is ______.


Which of the following is not continuous for all x?


The function f(x) = x – |x – x2| is ______.


If f(x) = `{{:((x - 4)/(|x - 4|) + a",",  "for"  x < 4),(a + b",",  "for"  x = 4  "is continuous at"  x = 4","),((x - 4)/(|x - 4|) + b",",  "for"  x > 4):}`

then ______.


`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×