Advertisements
Advertisements
प्रश्न
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous :
f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",", "for" x ≠ 0),(= 3/4",", "for" x = 0):}}` at x = 0
उत्तर
f(0) = `3/4` ...(Given)
`lim_(x -> 0) "f"(x) = lim_(x -> 0) ("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)`
= `lim_(x -> 0) (("e"^(5sinx) - 1) - ("e"^(2x) - 1))/(5tanx - 3x)`
= `lim_(x -> 0) [((("e"^(5sinx) - 1) - ("e"^(2x) - 1))/x)/((5tanx - 3x)/x)]` ...`[("Divde numerator and denomiantor by" x),(because x -> 0"," therefore x ≠ 0)]`
= `(lim_(x -> 0) (("e"^(5sinx) - 1)/x - ("e"^(2x) - 1)/x))/(lim_(x -> 0) ((5tanx)/x - 3))`
= `(lim_(x -> 0)("e"^(5sinx - 1)/(5sinx) (5sinx)/x) - lim_(x -> 0) (("e"^(2x) - 1)/(2x) xx 2))/(lim_(x -> 0) (5tanx)/x - lim_(x -> 0) 3)`
= `(5 lim_(x -> 0) (("e"^(5sinx) - 1)/(5sinx))* lim_(x -> 0) (sinx/x) - 2 lim_(x -> 0) ("e"^(2x) - 1)/(2x))/(5 lim_(x -> 0) tanx/x - lim_(x -> 0) (3))`
= `(5(1)(1) - 2(1))/(5(1) - 3)` ...`[(because x -> 0"," 2x -> 0"," sinx -> 0"," 5sin x -> 0 and),(lim_(x -> 0) ("e"^(x - 1)/x) = 1 "," lim_(x -> 0) sinx/x = 1)]`
= `3/2`
∴ `lim_(x -> 0) "f"(x) ≠ "f"(0)`
∴ f(x) is continuous at x = 0.
∴ f(x) has a removable discontinuity at x = 0
This discontinuity can be removed by redefining f(0) = `3/2`.
∴ f(x) can be redefined as
f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",", x ≠ 0),(= 3/2",", x = 0):}`
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",", "for" x ≠ 2),(= -24",", "for" x = 2):}}` at x = 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= 4x + 1",", "for" x ≤ 8/3),(= (59 - 9x)/3 ",", "for" x > 8/3):}} "at" x = 8/3`
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",", "for" x ≠ 0),(= 2",", "for" x = 0):}}` at x = 0.
Test the continuity of the following function at the point or interval indicated against them:
f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",", "for" 0 < x < 3"," x ≠ 2),(= 12",", "for" x = 2),(= (2 - 2x - x^2)/(x - 4)",", "for" 3 ≤ x < 4):}}` at x = 2
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
Discuss the continuity of f(x) at x = `pi/4` where,
f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for" x ≠ pi/4),(= 3/sqrt(2)",", "for" x = pi/4):}`
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) `{:(= x + 1",", "for" 1 < x < 3),(= x^2 + "p"x + "q"",", "for" |x - 2| ≥ 1):}`
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1
Select the correct answer from the given alternatives:
If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for" x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =
Select the correct answer from the given alternatives:
If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is
Select the correct answer from the given alternatives:
f(x) `{:(= (32^x - 8^x - 4^x + 1)/(4^x - 2^(x + 1) + 1)",", "for" x ≠ 0),(= "k""," , "for" x = 0):}` is continuous at x = 0, then value of ‘k’ is
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = [x + 1] for x ∈ [−2, 2)
Where [*] is greatest integer function.
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 + x + 1",", "for" |x - 3| ≥ 2),(= x^2 + 3",", "for" 1 < x < 5):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + 5x + 1"," , "for" 0 ≤ x ≤ 3),(= x^3 + x + 5"," , "for" 3 < x ≤ 6):}`
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) = `((x + 3)(x^2 - 6x + 8))/(x^2 - x - 12)`
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) `{:(= x^2 + 2x + 5"," , "for" x ≤ 3),( = x^3 - 2x^2 - 5",", "for" x > 3):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for" x ≠ 2),(= "k"",", "for" x = 2):}}` at x = 2
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |2x - 3| ≥ 2),(= 3x + 2",", "for" 1/2 < x < 5/2):}`
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for" x ≠ 0),(K",", "for" x = 0):}`
is continuous at x = 0, then K is ______.
Which of the following is not continuous for all x?
The function f(x) = x – |x – x2| is ______.
If f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4 "is continuous at" x = 4","),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
then ______.
If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`
is continuous at x = 0, then the value of k is ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.