Advertisements
Advertisements
प्रश्न
Discuss the continuity of f(x) at x = `pi/4` where,
f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for" x ≠ pi/4),(= 3/sqrt(2)",", "for" x = pi/4):}`
उत्तर
`"f"(pi/4) = 3/sqrt(2)`
= `lim_(x -> pi/4) "f"(x) = lim_(x -> pi/4) ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)`
= (sin x + cos x)3 = `[(sin x + cos x)^2]^(3/2)`
= `(1 + sin 2x)^(3/2)`
∴ `lim_(x -> pi/4) "f"(x) = lim_(x -> pi/4) ((1 + sin 2x)^(3/2) - 2^(3/2))/(sin 2x - 1)`
Put 1 + sin 2x = t
∴ sin 2x = t – 1
As `x -> pi/4"," "t" -> 1 + sin 2(pi/4)`
i.e. `"t" -> 1 + sin pi/(2)`
i.e. t → 1 + 1
i.e. t → 2
∴ `lim_(x -> pi/4) "f"(x) = lim_("t" -> 2) ("t"^(3/2) - 2^(3/2))/("t" - 1 - 1)`
= `lim_("t" -> 2) ("t"^(3/2) - 2^(3/2))/("t" - 2)`
= `3/2(2)^(1/2) ...[lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `(3sqrt(2))/(2)`
= `3/sqrt(2)`
∴ `lim_(x -> pi/4) "f"(x) = "f"(pi/4)`
∴ f(x) is continuous at x = `pi/(4)`
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them :
f(x) `{:(= x/(tan3x) + 2",", "for" x < 0),(= 7/3",", "for" x ≥ 0):}} "at" x = 0`
Discuss the continuity of the function f(x) = |2x + 3|, at x = `(−3)/(2)`
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",", "for" x ≠ 2),(= 1/5",", "for" x = 2):}}`at x = 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= 4x + 1",", "for" x ≤ 8/3),(= (59 - 9x)/3 ",", "for" x > 8/3):}} "at" x = 8/3`
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",", "for" x ≠ 0),(= 2",", "for" x = 0):}}` at x = 0.
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Discuss the continuity of the following function at the point indicated against them :
f(x) = `{:(=( sqrt(3) - tanx)/(pi - 3x)",", x ≠ pi/3),(= 3/4",", x = pi/3):}} "at" x = pi/3`
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",", "for" x ≠ 0),(= (log 2)^2/2",", "for" x = 0):}}` at x = 0.
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous :
f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",", "for" x ≠ 0),(= 3/4",", "for" x = 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= log_((1 + 3x)) (1 + 5x)",", "for" x > 0),(=(32^x - 1)/(8^x - 1)",", "for" x < 0):}}` at x = 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) `{:(= x + 1",", "for" 1 < x < 3),(= x^2 + "p"x + "q"",", "for" |x - 2| ≥ 1):}`
Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Select the correct answer from the given alternatives:
If f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |x −1| ≥ 3), (= 4x + 5",", "for" -2 < x < 4):}` is continuous everywhere then,
Select the correct answer from the given alternatives:
If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.
Select the correct answer from the given alternatives:
If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 - 2x + 5",", "for" 0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for" 2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for" 4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for" x = 5):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0
f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) = [x + 1] for x ∈ [−2, 2)
Where [*] is greatest integer function.
Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:
f(x) `{:(= x^2 + 2x + 5"," , "for" x ≤ 3),( = x^3 - 2x^2 - 5",", "for" x > 3):}`
Find f(a), if f is continuous at x = a where,
f(x) = `(1 - cos[7(x - pi)])/(5(x - pi)^2`, for x ≠ π at a = π
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
If f(x) = `{(8-6x; 0<x≤2), (4x-12; 2<x≤3),(2x+10; 3<x≤6):}` then f(x) is ______
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?
If f(x) = `{{:(x, "for" x ≤ 0),(0,
"for" x > 0):}`, then f(x) at x = 0 is ______.