Advertisements
Advertisements
प्रश्न
Solve using intermediate value theorem:
Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5
उत्तर
Let f(x) = x3 − 5x2 + 3x + 6 which is a polynomial function and hence continuous on [1, 5]
We factorise f(x) by synthetic division:
2 |
1 –5 3 6 2 –6 –6 |
1 –3 –3 0 |
∴ f(x) = (x – 2)(x2 – 3x – 3)
∴ f(1) = (1 – 2)(1 – 3 – 3) = 5 > 0
f(2) = (2 – 2)(4 – 6 – 3) = 0
∴ x = 2 is a root of f(x) = 0
f(3) = (3 – 2)(9 – 9 – 3) = – 3 < 0
f(4) = (4 – 2)(16 – 12 – 3) = 2 > 0
f is continuous on [3, 4]
f(3) < 0, f(4) > 0
∴ by intermediate value theorem for continuous function f(x) = 0 has a root between 3 and 4
∴ there are two roots, x = 2 and a root between x = 3 and x = 4.
∴ f(x) = 0 has at least two root between 1 and 5.
APPEARS IN
संबंधित प्रश्न
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2
Examine the continuity of `f(x) = {:((x^2 - 9)/(x - 3)",", "for" x ≠ 3),(=8",", "for" x = 3):}}` at x = 3.
Examine whether the function is continuous at the points indicated against them:
f(x) `{:(= x^3 - 2x + 1",", "if" x ≤ 2),(= 3x - 2",", "if" x > 2):}}` at x = 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",", "for" x ≠ 2),(= 1/5",", "for" x = 2):}}`at x = 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",", "for" x ≠ 2),(= -24",", "for" x = 2):}}` at x = 2
Test the continuity of the following function at the point or interval indicated against them :
f(x) `{:(= 4x + 1",", "for" x ≤ 8/3),(= (59 - 9x)/3 ",", "for" x > 8/3):}} "at" x = 8/3`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= 3x + 2",", "for" -4 ≤ x ≤-2),(= 2x - 3";", "for" -2 < x ≤ 6):}`
If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for" x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`
If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).
If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",", "for" x ≠ 0), (= "k"",", "for" x = 0):}}` is continuous at x = 0, find k
If f(x) `{:(= (sin2x)/(5x) - "a"",", "for" x > 0),(= 4 ",", "for" x = 0),(= x^2 + "b" - 3",", "for" x < 0):}}` is continuous at x = 0, find a and b
Discuss the continuity of f(x) at x = `pi/4` where,
f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for" x ≠ pi/4),(= 3/sqrt(2)",", "for" x = pi/4):}`
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) `{:(= x + 1",", "for" 1 < x < 3),(= x^2 + "p"x + "q"",", "for" |x - 2| ≥ 1):}`
Select the correct answer from the given alternatives:
If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is
Select the correct answer from the given alternatives:
If f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |x −1| ≥ 3), (= 4x + 5",", "for" -2 < x < 4):}` is continuous everywhere then,
Select the correct answer from the given alternatives:
If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.
Select the correct answer from the given alternatives:
If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 - 2x + 5",", "for" 0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for" 2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for" 4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for" x = 5):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 + x + 1",", "for" |x - 3| ≥ 2),(= x^2 + 3",", "for" 1 < x < 5):}`
Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:
f(x) `{:(= x^2 + x - 3,"," "for" x ∈ [ -5, -2)),(= x^2 - 5,"," "for" x ∈ (-2, 5]):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for" x ≠ 0),(= 2/3",", "for" x = 0):}}` at x = 0
Find a and b if following function is continuous at the point or on the interval indicated against them:
f(x) `{:(= "a"x^2 + "b"x + 1",", "for" |2x - 3| ≥ 2),(= 3x + 2",", "for" 1/2 < x < 5/2):}`
Find f(a), if f is continuous at x = a where,
f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1
Solve using intermediate value theorem:
Show that 5x − 6x = 0 has a root in [1, 2]
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If f(x) = `{{:(tanx/x + secx",", x ≠ 0),(2",", x = 0):}`, then ______.
If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.
Which of the following is not continuous for all x?
The function f(x) = x – |x – x2| is ______.
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.