हिंदी

Examine the continuity of ,for,forf(x)=x2-9x -3, for x≠3=8, for x=3} at x = 3. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Examine the continuity of `f(x) = {:((x^2 - 9)/(x  - 3)",",  "for"  x ≠ 3),(=8",",  "for"  x = 3):}}` at x = 3.

योग

उत्तर

f(3) = 8  ...(1) (Given)

`lim_(x -> 3) f(x) =  lim_(x -> 3) (x^2 - 9)/(x - 3)`

= `lim_(x -> 3) ((x - 3)(x + 3))/(x - 3)`

= `lim_(x -> 3) (x + 3)`  ...[∵ x → 3, x ≠ 3, ∴ x – 3 ≠ 0]

= 3 + 3

= 6  ...(2)

From (1) and (2),

f(3) ≠ `lim_(x -> 3)` f(x)

∴ f is discontinuous at x = 3.

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - EXERCISE 8.1 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
EXERCISE 8.1 | Q 1) (iii) | पृष्ठ १७२

संबंधित प्रश्न

Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1


Examine whether the function is continuous at the points indicated against them:

f(x)  `{:(= x^3 - 2x + 1",",  "if"  x ≤ 2),(= 3x - 2",",  "if"  x > 2):}}` at x = 2


Examine whether the function is continuous at the points indicated against them :

f(x) `{:(= x/(tan3x) + 2",",   "for"  x < 0),(= 7/3",",  "for"  x ≥ 0):}}  "at"  x = 0`


Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",",  "for"  x ≠ 2),(= 1/5",",  "for"  x = 2):}}`at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= 4x + 1",",  "for"  x ≤  8/3),(= (59 - 9x)/3 ",",  "for"  x > 8/3):}}  "at"  x = 8/3`


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= 4 + sin x",",  "for"  x < pi),(= 3 - cos x",",  "for"  x > pi):}`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(1 - cos2x)/sinx`, for x ≠ 0


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=("e"^(1/x) - 1)/("e"^(1/x) + 1)",",  "for"  x ≠ 0),(= 1",", "for"  x = 0):}}` at x = 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous :

f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",",   "for"  x ≠ 0),(= 3/4",",   "for"  x = 0):}}` at x = 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) = `((3 - 8x)/(3 - 2x))^(1/x)`, for x ≠ 0


If f(x)  `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for"  x ≠ 0),(= k",",  "for"  x = 0):}}` is continuous at x = 0, find k


If f(x) `{:(= (sin2x)/(5x) - "a"",", "for"  x > 0),(= 4 ",", "for"  x = 0),(= x^2 + "b" - 3",", "for"  x < 0):}}` is continuous at x = 0, find a and b


Discuss the continuity of f on its domain, where f(x) `{:(= |x + 1|",", "for"  -3 ≤ x ≤ 2),(= |x - 5|",", "for"  2 < x ≤ 7):}`.


Select the correct answer from the given alternatives:

f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for"  x ≠ pi/2),(= log sqrt(2)",", "for"  x = pi/2):}`


Select the correct answer from the given alternatives:

If f(x) `{:(= "a"x^2 + "b"x + 1",", "for"  |x −1| ≥ 3), (= 4x + 5",", "for"  -2 < x < 4):}` is continuous everywhere then,


Select the correct answer from the given alternatives:

If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.


Select the correct answer from the given alternatives:

If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (x^2 - 3x - 10)/(x - 5)",", "for"  3 ≤ x ≤ 6","  x ≠ 5),(= 10",", "for"  x = 5),(=(x^2 - 3x - 10)/(x - 5)",", "for"  6 < x ≤ 9):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 - 2x + 5",", "for"  0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for"  2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for"  4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for"  x = 5):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for"  x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for"  x = 1):}}` at x = 1


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + x - 3,","  "for"  x ∈ [ -5, -2)),(= x^2 - 5,","  "for"  x ∈ (-2, 5]):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for"  x ≠ 2),(= "k"",", "for"  x = 2):}}` at x = 2


If f(x) is continuous at x = 3, where

f(x) = ax + 1, for x ≤ 3

= bx + 3, for x > 3 then.


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


If f(x) = `{{:(x, "for"  x ≤ 0),(0,
"for"  x > 0):}`, then f(x) at x = 0 is ______.


Which of the following is not continuous for all x?


If f(x) = `{{:((3 sin πx)/(5x),",", x ≠ 0),(2k,",", x = 0):}`

is continuous at x = 0, then the value of k is ______.


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×