हिंदी

Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain: f(x) =x2+x-3, for x∈[-5,-2)=x2-5, for x∈(-2,5] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + x - 3,","  "for"  x ∈ [ -5, -2)),(= x^2 - 5,","  "for"  x ∈ (-2, 5]):}`

योग

उत्तर

f is continuous in [– 5, – 2) and in (– 2, 5] since it is a polynomial function.

Continuity at x = – 2

f(x) = x2 + x – 3, for x ∈ [– 5, – 2)

∴ `lim_(x -> - 2^-) "f"(x) = lim_(x -> -2) (x^2 + x - 3)` = 4 – 2 – 3 = – 1

Also, f(x) = x2 + 5, for x ∈ [– 2, 5)

∴ `lim_(x -> -2^+) "f"(x) = lim_(x -> - 2) (x^2 - 5)` = 4 – 5 = – 1

∴ `lim_(x -> -2^-) "f"(x) = lim_(x -> - 2^+) "f"(x)` = – 1

∴ `lim_(x -> - 2) "f"(x)` = – 1

But f(– 2) is not defined.

∴ f is discontinuous at x = – 2

This discontinuity is removable and can be removed by redefining the function as follows:

f(x) `{:(= x^2 + x - 3, ","  "for"  x ∈ [ -5, -2)),(= x^2 - 5, ","  "for"  x ∈ (-2, 5]),(= -1, ","  "for"  x = -2):}`

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - MISCELLANEOUS EXERCISE-8 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
MISCELLANEOUS EXERCISE-8 | Q (III) (1) | पृष्ठ १७७

संबंधित प्रश्न

Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2


Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.


Test the continuity of the following function at the point or interval indicated against them:

f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",",  "for"  0 < x < 3","  x ≠ 2),(= 12",",  "for"  x = 2),(= (2 - 2x - x^2)/(x - 4)",",  "for"  3 ≤ x < 4):}}` at x = 2


Identify the discontinuity for the following function as either a jump or a removable discontinuity.

f(x) `{:(= x^2 + 3x - 2",",  "for"  x ≤ 4),(= 5x + 3",",  "for"  x > 4):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=("e"^(1/x) - 1)/("e"^(1/x) + 1)",",  "for"  x ≠ 0),(= 1",", "for"  x = 0):}}` at x = 0


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",",  "for"  x ≠ 0),(= (log 2)^2/2",",  "for"  x = 0):}}` at x = 0.


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


If f(x) = `(sqrt(2 + sin x) - sqrt(3))/(cos^2x), "for"  x ≠ pi/2`, is continuous at x = `pi/2` then find `"f"(pi/2)`


If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",",  "for"  x ≠ 0), (= "k"",",  "for"  x = 0):}}` is continuous at x = 0, find k


Discuss the continuity of f(x) at x = `pi/4` where, 

f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for"  x ≠ pi/4),(= 3/sqrt(2)",", "for"  x = pi/4):}`


Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.


Let f(x) = ax + b (where a and b are unknown)

= x2 + 5 for x ∈ R

Find the values of a and b, so that f(x) is continuous at x = 1


Select the correct answer from the given alternatives:

If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is


Select the correct answer from the given alternatives:

If f(x) = `(12^x - 4^x - 3^x + 1)/(1 - cos 2x)`, for x ≠ 0 is continuous at x = 0 then the value of f(0) is ______.


Select the correct answer from the given alternatives:

If f(x) = `((4 + 5x)/(4 - 7x))^(4/x)`, for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) = `(cos4x - cos9x)/(1 - cosx)`, for x ≠ 0

f(0) = `68/15`, at x = 0 on `- pi/2 ≤ x ≤ pi/2`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for"  x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for"  x = 1):}}` at x = 1


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= (|x + 1|)/(2x^2 + x - 1)",", "for"  x ≠ -1),(= 0",", "for"  x = -1):}}` at x = – 1


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= x^2 + 5x + 1"," , "for"  0 ≤ x ≤ 3),(= x^3 + x + 5"," , "for"  3 < x ≤ 6):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for"  x ≠ 2),(= "k"",", "for"  x = 2):}}` at x = 2


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= (45^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1))",", "for"  x ≠ 0),(= 2/3",", "for"  x = 0):}}` at x = 0


Solve using intermediate value theorem:

Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5


If f(x) = `{:{(tan^-1|x|; "when"  x ≠ 0), (pi/4;  "when"  x = 0):}`, then ______ 


If f(x) is continuous at x = 3, where

f(x) = ax + 1, for x ≤ 3

= bx + 3, for x > 3 then.


If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at

= k, x = 0 is continuous x = 0. Then k = ______.


If f(x) = `{{:((sin5x)/(x^2 + 2x)",", x ≠ 0),(k + 1/2",", x = 0):}` is continuous at x = 0, then the value of k is ______.


Let f be the function defined by

f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`


If f(x) = `1/(1 - x)`, the number of points of discontinuity of f{f[f(x)]} is ______.


If the function f(x) = `[tan(π/4 + x)]^(1/x)` for x ≠ 0 is = K for x = 0 continuous at x = 0, then K = ?


If f(x) = `{{:(x, "for"  x ≤ 0),(0,
"for"  x > 0):}`, then f(x) at x = 0 is ______.


The function f(x) = x – |x – x2| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×