हिंदी

If f(x) =sin2x5x-a,for x>0=4,for x=0=x2+b-3,for x<0} is continuous at x = 0, find a and b - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f(x) `{:(= (sin2x)/(5x) - "a"",", "for"  x > 0),(= 4 ",", "for"  x = 0),(= x^2 + "b" - 3",", "for"  x < 0):}}` is continuous at x = 0, find a and b

योग

उत्तर

f(x) is continuous at x = 0

∴ `lim_(x -> 0^+) "f"(x)` = f(0)

∴ `lim_(x -> 0^+) ((sin2x)/(5x) - "a")` = 4

∴ `lim_(x -> 0^+) (sin 2x)/(5x) - lim_(x -> 0^+) "a"` = 4

∴ `1/5 lim_(x -> 0^+) (sin2x)/(2x) xx (2) - lim_(x -> 0^+) "a"` = 4

∴ `1/5 (1) (2) - "a"` = 4     ...`[(because  x -> 0","  2x -> 0),(lim_(x -> 0^+) sintheta/theta = 1)]`

∴ `2/5 - "a"` = 4

∴ `2/5 - 4` = a

∴ a = `-18/5`

Also, `lim_(x -> 0^+) "f"(x)` = f(0)

∴ `lim_(x -> 0^+) (x^2 + "b" - 3)` = 4

∴ b – 3 = 4

∴ b = 7

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - EXERCISE 8.1 [पृष्ठ १७४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
EXERCISE 8.1 | Q 11) (iii) | पृष्ठ १७४

संबंधित प्रश्न

Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Test the continuity of the following function at the point or interval indicated against them:

f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",",  "for"  0 < x < 3","  x ≠ 2),(= 12",",  "for"  x = 2),(= (2 - 2x - x^2)/(x - 4)",",  "for"  3 ≤ x < 4):}}` at x = 2


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Identify the discontinuity for the following function as either a jump or a removable discontinuity.

f(x) `{:(= x^2 + 3x - 2",",  "for"  x ≤ 4),(= 5x + 3",",  "for"  x > 4):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= (x^3 - 8)/(x^2 - 4)",",  "for"  x > 2),(= 3",",  "for"  x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",",  "for"  x < 2):}`


If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).


If f(x)  `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for"  x ≠ 0),(= k",",  "for"  x = 0):}}` is continuous at x = 0, find k


For what values of a and b is the function

f(x) `{:(= (x^2 - 4)/(x - 2)",", "for"  x < 2),(= "a"x^2 - "b"x + 3",", "for"  2 ≤ x < 3),(= 2x - "a" + "b"",", "for"  x ≥ 3):}}` continuous for every x on R?


Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.


Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.


Let f(x) = ax + b (where a and b are unknown)

= x2 + 5 for x ∈ R

Find the values of a and b, so that f(x) is continuous at x = 1


Select the correct answer from the given alternatives:

If f(x) = `((sin2x)tan5x)/("e"^(2x) - 1)^2`, for x ≠ 0 is continuous at x = 0, then f(0) is


Select the correct answer from the given alternatives:

f(x) = `(x^2 - 7x + 10)/(x^2 + 2x - 8)`, for x ∈ [– 6, – 3]


Select the correct answer from the given alternatives:

f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for"  x ≠ 0),(= "k"",", "for"  x = 0):}` is continuous at x = 0, then ‘k’ =


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:( = (sin^2pix)/(3(1 - x)^2) ",", "for"  x ≠ 1),(= (pi^2sin^2((pix)/2))/(3 + 4cos^2 ((pix)/2)) ",", "for"  x = 1):}}` at x = 1


Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for"  x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for"  x ∈ [3, 6]):}`


Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:

f(x) `{:(= x^2 + 2x + 5"," , "for"  x ≤ 3),( = x^3 - 2x^2 - 5",", "for"  x > 3):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for"  x ≠ 2),(= "k"",", "for"  x = 2):}}` at x = 2


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for"  x < 0),(= (9)/(log2)",", "for"  x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for"  x > 0):}`


Find f(a), if f is continuous at x = a where,

f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1


Solve using intermediate value theorem:

Show that x3 − 5x2 + 3x + 6 = 0 has at least two real root between x = 1 and x = 5


Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______


If function `f(x)={((x^2-9)/(x-3), ",when "xne3),(k, ",when "x =3):}` is continuous at x = 3, then the value of k will be ______.


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


Let f be the function defined by

f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`


If the function f(x) defined by

f(x) = `{{:(x sin  1/x",", "for"  x = 0),(k",", "for"  x = 0):}`

is continuous at x = 0, then k is equal to ______.


For what value of k, the function defined by

f(x) = `{{:((log(1 + 2x)sin^0)/x^2",", "for"  x ≠ 0),(k",", "for"  x = 0):}`

is continuous at x = 0 ?


Which of the following is not continuous for all x?


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×