हिंदी

Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain: f(x) =x2+x+1x+1,for x∈[0,3)=3x+4x2-5,for x∈[3,6] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Identify discontinuity for the following function as either a jump or a removable discontinuity on their respective domain:

f(x) `{:(= (x^2 + x + 1)/(x + 1)"," , "for"  x ∈ [0, 3)),(=(3x +4)/(x^2 - 5)"," , "for"  x ∈ [3, 6]):}`

योग

उत्तर

For x ∈ [0, 3), f(x) = `(x^2 + x + 1)/(x + 1)`, being a rational function is continuous except when its denominator x + 1 = 0 i.e., at x = – 1, which does not belong to [0, 3)

∴ f is continuous on [0, 3).

For x ∈ [3, 6], f(x) = `(3x + 4)/(x^2 - 5)`, being a rational function is continuous except when its denominator x2 – 5 = 0 i.e., at x = `±  sqrt(5)` But `±  sqrt(5) ∉ [3,  6]`

∴ f is continuous on [0, 6] except possibly at x = 3

Continuity at x = 3

f(x) = `(x^2 + x + 1)/(x + 1)`, for x ∈ [0, 3)

∴ `lim_(x -> 3^-) "f"(x) =  lim_(x -> 3) (x^2 + x + 1)/(x + 1)`

= `(lim_(x -> 3)(x^2 + x + 1))/(lim_(x -> 3) (x + 1))`

= `(9 + 3 + 1)/(3 + 1)`

= `13/4`

Also, f(x) = `(3x + 4)/(x^2 - 5)`, for x ∈ [3, 6]

∴ `lim_(x -> 3^+) "f"(x) = "f"(3) = (9 + 4)/(9 - 5) = 13/4`

∴ `"f"(3) = lim_(x -> 3^+) "f"(x) = lim_(x -> 3^-) "f"(x)`

∴ f is continuous at x = 3.

Hence, f is continuous on its domain [0, 6].

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - MISCELLANEOUS EXERCISE-8 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
MISCELLANEOUS EXERCISE-8 | Q (III) (3) | पृष्ठ १७७

संबंधित प्रश्न

Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1,         for x ≤ 2
      = 3x − 2,                 for x > 2, at x = 2


Examine whether the function is continuous at the points indicated against them:
f(x) = `(x^2 + 18x - 19)/(x - 1)`        for x ≠ 1

      = 20                               for x = 1, at x = 1


Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = − 2


Examine the continuity of `"f"(x)  {:(= sin x",",  "for"  x ≤ pi/4), (= cos x",",  "for"  x > pi/4):}}  "at"  x = pi/4`


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (sqrt(x - 1) - (x - 1)^(1/3))/(x - 2)",",  "for"  x ≠ 2),(= 1/5",",  "for"  x = 2):}}`at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x)  `{:(= (x^3 - 8)/(sqrt(x + 2) - sqrt(3x - 2))",",  "for"  x ≠ 2),(= -24",",  "for"  x = 2):}}` at x = 2


Test the continuity of the following function at the point or interval indicated against them :

f(x) `{:(= ((27 - 2x)^(1/3) - 3)/(9 - 3(243 + 5x)^(1/5))",",  "for"  x ≠ 0),(= 2",",  "for"  x = 0):}}` at x = 0.


Test the continuity of the following function at the point or interval indicated against them:

f(x) `{:( =(x^2 + 8x - 20)/(2x^2 - 9x + 10)",",  "for"  0 < x < 3","  x ≠ 2),(= 12",",  "for"  x = 2),(= (2 - 2x - x^2)/(x - 4)",",  "for"  3 ≤ x < 4):}}` at x = 2


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(3sin^2 x + 2cos x(1 - cos 2x))/(2(1 - cos^2x)`, for x ≠ 0


Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",",  "for"  x ≠ 0),(= (log 2)^2/2",",  "for"  x = 0):}}` at x = 0.


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous :

f(x) `{:(=("e"^(5sinx) - "e"^(2x))/(5tanx - 3x)",",   "for"  x ≠ 0),(= 3/4",",   "for"  x = 0):}}` at x = 0


If f(x) = `(4^(x - π) + 4^(π - x) - 2)/(x - π)^2` for x ≠ π, is continuous at x = π, then find f(π).


If f(x) `{:(= (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)",",  "for"  x ≠ 0), (= "k"",",  "for"  x = 0):}}` is continuous at x = 0, find k


If f(x)  `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for"  x ≠ 0),(= k",",  "for"  x = 0):}}` is continuous at x = 0, find k


If f(x) `{:(= (sin2x)/(5x) - "a"",", "for"  x > 0),(= 4 ",", "for"  x = 0),(= x^2 + "b" - 3",", "for"  x < 0):}}` is continuous at x = 0, find a and b


For what values of a and b is the function

f(x) `{:(= "a"x + 2"b" + 18",",  "for"  x ≤ 0),(= x^2 + 3"a" - "b"",",  "for"  0 < x ≤ 2),(= 8x - 2",",  "for"  x > 2):}}` continuous for every x?


Determine the values of p and q such that the following function is continuous on the entire real number line.

f(x) `{:(= x + 1",", "for"   1 < x < 3),(= x^2 + "p"x + "q"",", "for"  |x - 2| ≥ 1):}`


Show that there is a root for the equation 2x3 − x − 16 = 0 between 2 and 3.


Select the correct answer from the given alternatives:

If f(x) = `(1 - sqrt(2) sinx)/(pi - 4x), "for"  x ≠ pi/4` is continuous at x = `pi/4`, then `"f"(pi/4)` =


Select the correct answer from the given alternatives:

If f(x) `{:(= "a"x^2 + "b"x + 1",", "for"  |x −1| ≥ 3), (= 4x + 5",", "for"  -2 < x < 4):}` is continuous everywhere then,


Select the correct answer from the given alternatives:

f(x) `{:(= (32^x - 8^x - 4^x + 1)/(4^x - 2^(x + 1) + 1)",", "for"  x ≠ 0),(= "k""," , "for"  x = 0):}` is continuous at x = 0, then value of ‘k’ is


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 + x + 1",", "for"  |x - 3| ≥ 2),(= x^2 + 3",", "for"  1 < x < 5):}`


Discuss the continuity of the following function at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous:

f(x) = `((x + 3)(x^2 - 6x + 8))/(x^2 - x - 12)`


Find a and b if following function is continuous at the point or on the interval indicated against them:

f(x) `{:(= (4tanx + 5sinx)/("a"^x - 1)",", "for"  x < 0),(= (9)/(log2)",", "for"  x = 0),(= (11x + 7x*cosx)/("b"^x - 1)",", "for"  x > 0):}`


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `{:{(tan^-1|x|; "when"  x ≠ 0), (pi/4;  "when"  x = 0):}`, then ______ 


If f(x) = `[tan (pi/4 + x)]^(1/x)`, x ≠ 0 at

= k, x = 0 is continuous x = 0. Then k = ______.


Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


If f(x) = `{{:(log(sec^2 x)^(cot^2x)",", "for"  x ≠ 0),(K",", "for"  x = 0):}`

is continuous at x = 0, then K is ______.


Which of the following is not continuous for all x?


For x > 0, `lim_(x rightarrow 0) ((sin x)^(1//x) + (1/x)^sinx)` is ______.


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×