Advertisements
Advertisements
Question
Discuss the continuity of the following function at the point indicated against them :
f(x) `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",", "for" x ≠ 0),(= (log 2)^2/2",", "for" x = 0):}}` at x = 0.
Solution
f(0) = `(log 2)^2/2` ...(Given) ...(1)
`lim_(x -> 0) "f"(x) (4^x - 2^(x + 1) + 1)/(1 - cos 2x)`
= `lim_(x -> 0) ((2^x)^2 - 2(2^x) + 1)/(2sin^2x)`
= `lim_(x -> 0) (2^x - 1)^2/(2sin^2x)`
= `lim_(x -> 0) ([(2^x - 1)^2/x^2])/(2((sin^2x)/x^2)` ...[∵ x → 0, x ≠ 0 ∴ x2 ≠ 0]
= `1/2 [lim_(x -> 0) (2^x - 1)/x]^2/[lim_(x -> 0) sinx/x]^2`
= `1/2 * (log 2)^2/(1)^2 ...[because lim_(x -> 0) ("a"^x - 1)/x = log "a"]`
= `(log 2)^2/2`
From (1) and (2)
`lim_(x -> 0) "f"(x)` = f(0)
∴ f is continuous at x = 0
APPEARS IN
RELATED QUESTIONS
Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1, for x ≤ 2
= 3x − 2, for x > 2, at x = 2
Examine the continuity of `f(x) = {:((x^2 - 9)/(x - 3)",", "for" x ≠ 3),(=8",", "for" x = 3):}}` at x = 3.
Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) = `(x^2 - 10x + 21)/(x - 7)`
Identify the discontinuity for the following function as either a jump or a removable discontinuity.
f(x) `{:(= x^2 + 3x - 2",", "for" x ≤ 4),(= 5x + 3",", "for" x > 4):}`
Identify discontinuities for the following function as either a jump or a removable discontinuity :
f(x) `{:(= x^2 - 3x - 2",", "for" x < -3),(= 3 + 8x",", "for" x > -3):}`
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(1 - cos2x)/sinx`, for x ≠ 0
Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :
f(x) = `(x^2 - 1)/(x^3 + 1)` for x ≠ – 1
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= 3x + 2",", "for" -4 ≤ x ≤-2),(= 2x - 3";", "for" -2 < x ≤ 6):}`
The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :
f(x) `{:(= (x^3 - 8)/(x^2 - 4)",", "for" x > 2),(= 3",", "for" x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",", "for" x < 2):}`
If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)
If f(x) `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for" x ≠ 0),(= k",", "for" x = 0):}}` is continuous at x = 0, find k
If f(x) `{:(= (sin2x)/(5x) - "a"",", "for" x > 0),(= 4 ",", "for" x = 0),(= x^2 + "b" - 3",", "for" x < 0):}}` is continuous at x = 0, find a and b
For what values of a and b is the function
f(x) `{:(= "a"x + 2"b" + 18",", "for" x ≤ 0),(= x^2 + 3"a" - "b"",", "for" 0 < x ≤ 2),(= 8x - 2",", "for" x > 2):}}` continuous for every x?
Discuss the continuity of f(x) at x = `pi/4` where,
f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for" x ≠ pi/4),(= 3/sqrt(2)",", "for" x = pi/4):}`
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) `{:(= x + 1",", "for" 1 < x < 3),(= x^2 + "p"x + "q"",", "for" |x - 2| ≥ 1):}`
Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.
Suppose f(x) `{:(= "p"x + 3",", "for" "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for" "b" < x ≤ "c"):}`
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.
f(b) = ______
`lim_(x -> "b"^+) "f"(x)` = _______
∴ pb + 3 = _______ − q
∴ p = `"_____"/"b"` is the required condition
Select the correct answer from the given alternatives:
f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for" x ≠ pi/2),(= log sqrt(2)",", "for" x = pi/2):}`
Select the correct answer from the given alternatives:
f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for" x ≠ 0),(= "k"",", "for" x = 0):}` is continuous at x = 0, then ‘k’ =
Select the correct answer from the given alternatives:
f(x) `{:(= (32^x - 8^x - 4^x + 1)/(4^x - 2^(x + 1) + 1)",", "for" x ≠ 0),(= "k""," , "for" x = 0):}` is continuous at x = 0, then value of ‘k’ is
Select the correct answer from the given alternatives:
If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 - 2x + 5",", "for" 0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for" 2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for" 4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for" x = 5):}`
Discuss the continuity of the following function at the point(s) or on the interval indicated against them:
f(x) `{:(= 2x^2 + x + 1",", "for" |x - 3| ≥ 2),(= x^2 + 3",", "for" 1 < x < 5):}`
Find k if following function is continuous at the point indicated against them:
f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for" x ≠ 2),(= "k"",", "for" x = 2):}}` at x = 2
Find f(a), if f is continuous at x = a where,
f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1
If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______
If f(x) = `{:{(tan^-1|x|; "when" x ≠ 0), (pi/4; "when" x = 0):}`, then ______
If f(x) is continuous at x = 3, where
f(x) = ax + 1, for x ≤ 3
= bx + 3, for x > 3 then.
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
If f(x) = `{{:(tanx/x + secx",", x ≠ 0),(2",", x = 0):}`, then ______.
Let f be the function defined by
f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`
If f(x) = `{{:((sin^3(sqrt(3)).log(1 + 3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3)) - 1)x)",", x ≠ 0),( a",", x = 0):}`
is continuous in [0, 1] then a is equal to ______.
`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.