English

Discuss the continuity of the following function at the point indicated against them : f(x) =4x-2x+1+11-cos2x, for x≠0=(log2)22, for x=0} at x = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Discuss the continuity of the following function at the point indicated against them :

f(x)  `{:(=(4^x - 2^(x + 1) + 1)/(1 - cos 2x)",",  "for"  x ≠ 0),(= (log 2)^2/2",",  "for"  x = 0):}}` at x = 0.

Sum

Solution

f(0) = `(log 2)^2/2`    ...(Given)   ...(1)

`lim_(x -> 0) "f"(x) (4^x - 2^(x + 1) + 1)/(1 - cos 2x)`

= `lim_(x -> 0) ((2^x)^2 - 2(2^x) + 1)/(2sin^2x)`

= `lim_(x -> 0) (2^x - 1)^2/(2sin^2x)`

= `lim_(x -> 0) ([(2^x - 1)^2/x^2])/(2((sin^2x)/x^2)`  ...[∵ x → 0, x ≠ 0 ∴ x2 ≠ 0]

= `1/2 [lim_(x -> 0) (2^x - 1)/x]^2/[lim_(x -> 0) sinx/x]^2`

= `1/2 * (log 2)^2/(1)^2   ...[because  lim_(x -> 0) ("a"^x - 1)/x = log "a"]`

= `(log 2)^2/2`

From (1) and (2)

`lim_(x -> 0) "f"(x)` = f(0)

∴ f is continuous at x = 0

shaalaa.com
Continuous and Discontinuous Functions
  Is there an error in this question or solution?
Chapter 8: Continuity - EXERCISE 8.1 [Page 173]

RELATED QUESTIONS

Examine whether the function is continuous at the points indicated against them:
f(x) = x3 − 2x + 1,         for x ≤ 2
      = 3x − 2,                 for x > 2, at x = 2


Examine the continuity of `f(x) = {:((x^2 - 9)/(x  - 3)",",  "for"  x ≠ 3),(=8",",  "for"  x = 3):}}` at x = 3.


Find all the point of discontinuities of f(x) = [x] on the interval (− 3, 2).


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) = `(x^2 - 10x + 21)/(x - 7)`


Identify the discontinuity for the following function as either a jump or a removable discontinuity.

f(x) `{:(= x^2 + 3x - 2",",  "for"  x ≤ 4),(= 5x + 3",",  "for"  x > 4):}`


Identify discontinuities for the following function as either a jump or a removable discontinuity :

f(x) `{:(= x^2 - 3x - 2",",  "for"  x < -3),(= 3 + 8x",",  "for"  x > -3):}`


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(1 - cos2x)/sinx`, for x ≠ 0


Show that following function have continuous extension to the point where f(x) is not defined. Also find the extension :

f(x) = `(x^2 - 1)/(x^3 + 1)` for x ≠ – 1


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= 3x + 2",",  "for"  -4 ≤ x ≤-2),(= 2x - 3";",  "for"  -2 < x ≤ 6):}`


The following function has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it become continuous :

f(x) `{:(= (x^3 - 8)/(x^2 - 4)",",  "for"  x > 2),(= 3",",  "for"  x = 2),(= ("e"^(3(x - 2)^2 - 1))/(2(x - 2)^2) ",",  "for"  x < 2):}`


If f(x) = `(cos^2 x - sin^2 x - 1)/(sqrt(3x^2 + 1) - 1)` for x ≠ 0, is continuous at x = 0 then find f(0)


If f(x)  `{:(= (5^x + 5^(-x) - 2)/(x^2)"," , "for"  x ≠ 0),(= k",",  "for"  x = 0):}}` is continuous at x = 0, find k


If f(x) `{:(= (sin2x)/(5x) - "a"",", "for"  x > 0),(= 4 ",", "for"  x = 0),(= x^2 + "b" - 3",", "for"  x < 0):}}` is continuous at x = 0, find a and b


For what values of a and b is the function

f(x) `{:(= "a"x + 2"b" + 18",",  "for"  x ≤ 0),(= x^2 + 3"a" - "b"",",  "for"  0 < x ≤ 2),(= 8x - 2",",  "for"  x > 2):}}` continuous for every x?


Discuss the continuity of f(x) at x = `pi/4` where, 

f(x) `{:(= ((sinx + cosx)^3 - 2sqrt(2))/(sin 2x - 1)",", "for"  x ≠ pi/4),(= 3/sqrt(2)",", "for"  x = pi/4):}`


Determine the values of p and q such that the following function is continuous on the entire real number line.

f(x) `{:(= x + 1",", "for"   1 < x < 3),(= x^2 + "p"x + "q"",", "for"  |x - 2| ≥ 1):}`


Show that there is a root for the equation x3 − 3x = 0 between 1 and 2.


Suppose f(x) `{:(= "p"x + 3",", "for"  "a" ≤ x ≤ "b"),(= 5x^2 − "q"",", "for"  "b" < x ≤ "c"):}`

Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the blanks.

f(b) = ______

`lim_(x -> "b"^+) "f"(x)` = _______

∴ pb + 3 = _______ − q

∴ p = `"_____"/"b"` is the required condition


Select the correct answer from the given alternatives:

f(x) = `{:(= (2^(cotx) - 1)/(pi - 2x)",", "for"  x ≠ pi/2),(= log sqrt(2)",", "for"  x = pi/2):}`


Select the correct answer from the given alternatives:

f(x) `{:(= ((16^x - 1)(9^x - 1))/((27^x - 1)(32^x - 1))",", "for"  x ≠ 0),(= "k"",", "for"  x = 0):}` is continuous at x = 0, then ‘k’ =


Select the correct answer from the given alternatives:

f(x) `{:(= (32^x - 8^x - 4^x + 1)/(4^x - 2^(x + 1) + 1)",", "for"  x ≠ 0),(= "k""," , "for"  x = 0):}` is continuous at x = 0, then value of ‘k’ is


Select the correct answer from the given alternatives:

If f(x) = [x] for x ∈ (–1, 2) then f is discontinuous at


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 - 2x + 5",", "for"  0 ≤ x ≤ 2),(= (1 - 3x - x^2)/(1 - x) "," , "for"  2 < x < 4),(= (x^2 - 25)/(x - 5)",", "for"  4 ≤ x ≤ 7 and x ≠ 5),(= 7",", "for"  x = 5):}`


Discuss the continuity of the following function at the point(s) or on the interval indicated against them:

f(x) `{:(= 2x^2 + x + 1",", "for"  |x - 3| ≥ 2),(= x^2 + 3",", "for"  1 < x < 5):}`


Find k if following function is continuous at the point indicated against them:

f(x) `{:(= ((5x - 8)/(8 - 3x))^(3/(2x - 4))",", "for"  x ≠ 2),(= "k"",", "for"  x = 2):}}` at x = 2


Find f(a), if f is continuous at x = a where,

f(x) = `(1 + cos(pi x))/(pi(1 - x)^2)`, for x ≠ 1 and at a = 1


If f(x) = `{((x^4 - 1/81)/(x^3 - 1/27), x ≠ 1/3), (k, x = 1/3):}` is continuous at x = `1/3`, then the value of k is ______


If f(x) = `{:{(tan^-1|x|; "when"  x ≠ 0), (pi/4;  "when"  x = 0):}`, then ______ 


If f(x) is continuous at x = 3, where

f(x) = ax + 1, for x ≤ 3

= bx + 3, for x > 3 then.


Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______


If f(x) = `{{:(tanx/x + secx",",   x ≠ 0),(2",",  x = 0):}`, then ______.


Let f be the function defined by

f(x) = `{{:((x^2 - 1)/(x^2 - 2|x - 1| - 1)",", x ≠ 1),(1/2",", x = 1):}`


If f(x) = `{{:((sin^3(sqrt(3)).log(1  +  3x))/((tan^-1 sqrt(x))^2(e^(5sqrt(3))  -  1)x)",", x ≠ 0),(                         a",", x = 0):}`

is continuous in [0, 1] then a is equal to ______.


`lim_(x rightarrow 0) (e^(x^2) - cosx)/x^2` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×