English
Tamil Nadu Board of Secondary EducationSSLC (English Medium) Class 10

Show that the given points form a right angled triangle and check whether they satisfy Pythagoras theorem. L(0, 5), M(9, 12) and N(3, 14) - Mathematics

Advertisements
Advertisements

Question

Show that the given points form a right angled triangle and check whether they satisfy Pythagoras theorem.

L(0, 5), M(9, 12) and N(3, 14)

Sum

Solution

The vertices are L(0, 5), M(9, 12) and N(3, 14)

Slope of a line = `(y_2 - y_1)/(x_2 - x_1)`

Slope of LM = `(12 - 5)/(9 - 0) = 7/9`


Slope of MN = `(14 - 12)/(3 - 9) = 2/(-6) = -1/3`

Slope of LN = `(14 - 5)/(3 - 0) = 9/3` = 3

Slope of MN × Slope of LN = `-1/3 xx 3` = –1

∴ MN ⊥ LN

∠N = 90°

∴ LMN is a right angle triangle.

Verification:

Distance = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`

LN = `sqrt((3 - 0)^2 + (14 - 5)^2`

= `sqrt(3^2 + 9^2)`

= `sqrt(9 + 81)`

= `sqrt(90)`

MN = `sqrt((9 - 3)^2 + (12 - 14)^2`

= `sqrt(6^2+ (- 2)^2`

= `sqrt(36 + 4)`

= `sqrt(40)`

LM = `sqrt((9 - 0)^2 + (12 - 5)^2`

= `sqrt(9^2 + 7^2)`

= `sqrt(81 + 49)`

= `sqrt(130)`

LM2 = LN2 + MN2

130 = 90 + 40

130 = 130

⇒ Pythagoras theorem is verified.

shaalaa.com
Inclination of a Line
  Is there an error in this question or solution?
Chapter 5: Coordinate Geometry - Exercise 5.2 [Page 220]

APPEARS IN

Samacheer Kalvi Mathematics [English] Class 10 SSLC TN Board
Chapter 5 Coordinate Geometry
Exercise 5.2 | Q 9. (ii) | Page 220
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×