Advertisements
Advertisements
Question
सिद्ध कीजिए कि एक दिए हुए बिंदु से होकर, हम एक दी हुई रेखा पर केवल एक लंब ही खींच सकते हैं।
[संकेत : विरोधाभास द्वारा उपपत्ति का प्रयोग कीजिए।]
Solution
एक रेखा l और एक बिंदु P पर विचार कीजिए।
रचना - दो प्रतिच्छेदी रेखाएँ खींचिए जो बिंदु P से होकर गुजरती हैं और जो l पर लंब है।
सिद्ध करना है - किसी दिए गए बिंदु से केवल एक लंब रेखा खींची जा सकती है, अर्थात ∠P = 0° सिद्ध करने के लिए।
उपपत्ति - ΔAPB में, ∠A + ∠P + ∠B = 180° ...[कोण के योग से त्रिभुज का गुण 180° होता है]
⇒ 90 + ∠P + 90° = 180°
⇒ ∠P = 180° – 180°
∴ ∠P = 0°
इसलिए, रेखाएँ n और m संपाती हैं।
अतः, एक दिए गए बिंदु से केवल एक लंब रेखा खींची जा सकती है।
APPEARS IN
RELATED QUESTIONS
यदि दो प्रतिच्छेदी रेखाओं से बना एक कोण समकोण है, तो अन्य तीन कोणों के बारे में आप क्या कह सकते हैं? अपने उत्तर का कारण दीजिए।
निम्नलिखित आकृति में, कौन-सी दो रेखाएँ समांतर हैं और क्यों?
![]() |
![]() |
निम्नलिखित आकृति में, OD कोण ∠AOC का समद्विभाजक है, OE कोण ∠BOC का समद्विभाजक है तथा OD ⊥ OE है। दर्शाइए कि A, O और B सरेख हैं।
निम्नलिखित आकृति में, ∠1 = 60° और ∠6 = 120° है। दर्शाइए कि m और n समांतर हैं।
AP और BQ उन दो एकांतर अंतःकोणों के समद्विभाजक हैं जो समांतर रेखाओं l और m के तिर्यक रेखा t द्वारा प्रतिच्छेद से बनते हैं (आकृति)। दर्शाइए कि AP || BQ है।
यदि निम्नलिखित आकृति में, एकांतर अंतःकोणों के समद्विभाजक AP और BQ समांतर हैं, तो दर्शाइए कि l ॥ m है।
एक त्रिभुज ABC का कोण A समकोण है। BC पर L एक बिंदु इस प्रकार है कि AL ⊥ BC है। सिद्ध कीजिए कि ∠BAL = ∠ACB है।
दो रेखाएँ क्रमश: दो समांतर रेखाओं पर लंब हैं। दर्शाइए कि ये दोनों रेखाएँ परस्पर समांतर हैं।
∆ABC के अंतःकोण ∠B और बहिष्कोण ∠ACD के समद्विभाजक बिंदु T पर प्रतिच्छेद करते हैं। सिद्ध कीजिए कि `∠BTC = 1/2 ∠BAC` हैं।