English

Solve the Equation by Using the Formula Method. 3y2 +7y + 4 = 0 - Algebra

Advertisements
Advertisements

Question

Solve the equation by using the formula method. 3y2 +7y + 4 = 0

Solution

The given quadratic equation is 3y2 + 7y + 4 = 0.
Comparing the given equation with ax2 + bx + c = 0 we get,
a = 3, b = 7 and c = 4

`y=(-b+-sqrt(b^2-4ac))/(2a)`

`y=(-7+-sqrt(7^2-4ac))/(2(3))`

`y=(-7+-sqrt(49-48))/6`

`y=(-7+-sqrt(1))/6`

`y=(-7+-1)/(6)`

`y=(-7+1)/(6) or y=(-7-1)/(6)`

`y=-6/6=-1 or y=-8/6=-4/3`

`y=-1 or y=-4/3`

Therefore `-1` and `-4/3` are the roots of given equation.

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

RELATED QUESTIONS

Without solving, examine the nature of roots of the equation 2x2 + 2x + 3 = 0


Find the values of k for which the roots are real and equal in each of the following equation:

`kx^2-2sqrt5x+4=0`


In the following determine the set of values of k for which the given quadratic equation has real roots:

2x2 + kx - 4 = 0


`(2)/x^2 - (5)/x + 2` = 0


Find the values of k so that the sum of tire roots of the quadratic equation is equal to the product of the roots in each of the following:
kx2 + 2x + 3k = 0


Discuss the nature of the roots of the following quadratic equations : x2 – 4x – 1 = 0


Find the value(s) of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also find these roots.


Choose the correct answer from the given four options :

If the equation 3x² – kx + 2k =0 roots, then the the value(s) of k is (are)


Choose the correct answer from the given four options :

If the equation {k + 1)x² – 2(k – 1)x + 1 = 0 has equal roots, then the values of k are


The quadratic equation whose roots are 1:


The value of k for which the equation x2 + 2(k + 1)x + k2 = 0 has equal roots is:


If p, q and r are rational numbers and p ≠ q ≠ r, then roots of the equation (p2 – q2)x2 – (q2 – r2)x + (r2 – p2) = 0 are:


State whether the following quadratic equation have two distinct real roots. Justify your answer.

3x2 – 4x + 1 = 0


Every quadratic equation has at least one real root.


If the coefficient of x2 and the constant term of a quadratic equation have opposite signs, then the quadratic equation has real roots.


Solve for x: 9x2 – 6px + (p2 – q2) = 0


Solve the equation: 3x2 – 8x – 1 = 0 for x.


If x = 3 is one of the roots of the quadratic equation x2 – 2kx – 6 = 0, then the value of k is ______.


Assertion (A): If one root of the quadratic equation 4x2 – 10x + (k – 4) = 0 is reciprocal of the other, then value of k is 8.

Reason (R): Roots of the quadratic equation x2 – x + 1 = 0 are real.


If the quadratic equation kx2 + kx + 1 = 0 has real and distinct roots, the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×