English

Solve the Following Quadratic Equations by Factorization: - Mathematics

Advertisements
Advertisements

Question

Solve the following quadratic equations by factorization: \[\sqrt{3} x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0\]

Answer in Brief

Solution

\[\sqrt{3} x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0\]

\[ \Rightarrow \sqrt{3} x^2 - 3\sqrt{2}x + \sqrt{2}x - 2\sqrt{3} = 0\]

\[ \Rightarrow \sqrt{3}x\left( x - \sqrt{6} \right) + \sqrt{2}\left( x - \sqrt{6} \right) = 0\]

\[ \Rightarrow \left( \sqrt{3}x + \sqrt{2} \right)\left( x - \sqrt{6} \right) = 0\]

\[ \Rightarrow \sqrt{3}x + \sqrt{2} = 0 \text { or } x - \sqrt{6} = 0\]

\[ \Rightarrow x = - \sqrt{\frac{2}{3}} \text { or } x = \sqrt{6}\]

Hence, the factors are \[\sqrt{6}\] and \[- \sqrt{\frac{2}{3}}\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Quadratic Equations - Exercise 4.3 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 4 Quadratic Equations
Exercise 4.3 | Q 38 | Page 20
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×