Advertisements
Advertisements
Question
Solve the following equation by using formula :
`(1)/x + (1)/(x - 2) = 3, x ≠ 0, 2`
Solution
`(1)/x + (1)/(x - 2)`
`(x - 2 + x)/(x(x - 2))` = 3
⇒ `(2x - 2)/(x^2 - 2x)` = 3
⇒ 3x2 - 6x = 2x - 2
⇒ 3x2 - 6x - 2x + 2 = 0
⇒ 3x2 - 8x + 2 = 0
Here a = 3, b = -8, c = 2
b2 - 4ac
= (-8)2 - 4 x 3 x 2
= 64 - 24
= 40
x = `(-b ± sqrt(b^2 - 4ac))/(2a)`
= `(-(-8) ± sqrt(40))/(2 xx 3)`
= `(8 ± 2sqrt(10))/(6)`
= `(4 ± sqrt(10))/(3)`
∴ x = `(4 + sqrt(10))/(3) and (4 - sqrt(10))/(3)`.
APPEARS IN
RELATED QUESTIONS
Check whether the following is quadratic equation or not.
`x^2 - 2x - sqrtx - 5 = 0`
Determine if, 3 is a root of the equation given below:
`sqrt(x^2-4x+3)+sqrt(x^2-9)=sqrt(4x^2-14x+16)`
Solve : (x + 1)(2x + 8) = (x + 7)(x + 3)
`4sqrt6x^2-13x-2sqrt6=0`
`4/x-3=5/(2x+3),x≠0,-3/2`
`3x-4/7+7/(3x-4)=5/2,x≠4/3`
Solve:
`3sqrt(2x^2) - 5x - sqrt2 = 0`
Solve, using formula:
x2 + x – (a + 2)(a + 1) = 0
Choose the correct answer from the given four options :
The roots of the equation x2 – 3x – 10 = 0 are
Choose the correct answer from the given four options :
If one root of a quadratic equation with rational coefficients is `(3 - sqrt(5))/(2)`, then the other