Advertisements
Advertisements
Question
State the importance of Davisson and Germer experiment.
Solution
The Davisson and Germer experiment are probably one of the most important experiments ever since it substantiated de Broglie’s hypothesis of wave-particle duality. It verified that De Broglie's “matter wave” hypothesis applied to matter (electrons) as well as light.
APPEARS IN
RELATED QUESTIONS
The de Broglie wavelengths associated with an electron and a proton are the same. What will be the ratio of (i) their momenta (ii) their kinetic energies?
Find the ratio of the de Broglie wavelengths of an electron and a proton when both are moving with the (a) same speed, (b) the same kinetic energy, and (c) the same momentum. State which of the two will have a longer wavelength in each case.
According to De-Broglie, the waves are associated with ______
Explain De Broglie’s Hypothesis.
The momentum of a photon of energy 1 MeV in kg m/s will be ______
The de Broglie wavelength associated with photon is, ____________.
If the radius of the innermost Bohr orbit is 0.53 Å, the radius of the 4th orbit is ______
According to de-Broglie hypothesis, the wavelength associated with moving electron of mass 'm' is 'λe'· Using mass energy relation and Planck's quantum theory, the wavelength associated with photon is 'λp'. If the energy (E) of electron and photon is same then relation between 'λe' and 'λp' is ______.
An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is ( c being velocity of light) ______.
What is the momentum of a photon having frequency 1.5 x 1013 Hz?
If the radius of the circular path and frequency of revolution of a particle of mass m are doubled, then the change in its kinetic energy will be (Ei and Ef are the initial and final kinetic energies of the particle respectively.)
A particle of charge q, mass m and energy E has de-Broglie wavelength `lambda.` For a particle of charge 2q, mass 2m and energy 2E, the de-Broglie wavelength is ____________.
If '`lambda_1`' and '`lambda_2`' are de-Broglie wavelengths for electrons in first and second Bohr orbits in hydrogen atom, then the ratio '`lambda_2`' to '`lambda_1`' is (E1 = -13.6 eV) ____________.
Graph shows the variation of de-Broglie wavelength `(lambda)` versus `1/sqrt"V"`, where 'V' is the accelerating potential for four particles carrying same charge but of masses m1 , m2, m3, m4. Which particle has a smaller mass?
A photon of wavelength 3315 Å falls on a photocathode and an electron of energy 3 x 10-19 J is ejected. The threshold wavelength of photon is [Planck's constant (h) = 6.63 x 10-34 J.s, velocity of light (c) = 3 x 108 m/s] ____________.
Explain de-Broglie wavelength.
Obtain an expression for de-Broglie wavelength of wave associated with material particles. The photoelectric work function for metal is 4.2 eV. Find the threshold wavelength.
A proton, a neutron, an electron and an α-particle have same energy. λp, λn, λe and λα are the de Broglie's wavelengths of proton, neutron, electron and α particle respectively, then choose the correct relation from the following :
The energy of an electron having de-Broglie wavelength `λ` is ______.
(h = Plank's constant, m = mass of electron)
An electron of mass m has de-Broglie wavelength λ when accelerated through potential difference V. When proton of mass M, is accelerated through potential difference 9V, the de-Broglie wavelength associated with it will be ______. (Assume that wavelength is determined at low voltage)
Calculate the de Broglie wavelength associated with an electron moving with a speed of `5 xx 10^6` m/s. `(m_e = 9.1 xx 10^(-31)kg)`