English
Karnataka Board PUCPUC Science Class 11

The Change in Frequency Due to Doppler Effect Does Not Depend on - Physics

Advertisements
Advertisements

Question

The change in frequency due to Doppler effect does not depend on

Options

  • the speed of the source

  • the speed of the observer

  • the frequency of the source

  • separation between the source and the observer.

MCQ

Solution

separation between the source and the observer \[v_0  = \left( \frac{v \pm u_0}{v \pm u_s} \right) v_s\]

It is clear from the equation that the change in frequency due to Doppler effect depends only on the relative motion and not on the distance between the source and the observer.

shaalaa.com
Doppler Effect
  Is there an error in this question or solution?
Chapter 16: Sound Waves - MCQ [Page 352]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 16 Sound Waves
MCQ | Q 15 | Page 352

RELATED QUESTIONS

In discussing Doppler effect, we use the word "apparent frequency". Does it mean that the frequency of the sound is still that of the source and it is some physiological phenomenon in the listener's ear that gives rise to Doppler effect? Think for the observer approaching the source and for the source approaching the observer.


Answer briefly.

State the expression for apparent frequency when the source is stationary and the listener is

  1. moving towards the source
  2. moving away from the source

Answer briefly.

State the expression for apparent frequency when source of sound and listener are

  1. moving towards each other
  2. moving away from each other

Solve the following problem.

A police car travels towards a stationary observer at a speed of 15 m/s. The siren on the car emits a sound of frequency 250 Hz. Calculate the recorded frequency. The speed of sound is 340 m/s.


What is meant by the Doppler effect?


A ship in a sea sends SONAR waves straight down into the seawater from the bottom of the ship. The signal reflects from the deep bottom bedrock and returns to the ship after 3.5 s. After the ship moves to 100 km it sends another signal which returns back after 2 s. Calculate the depth of the sea in each case and also compute the difference in height between two cases.


A sound source and listener are both stationary and a strong wind is blowing. Is there a Doppler effect?


How do animals sense impending danger of hurricane?


Two cars moving in opposite directions approach each other with speed of 22 m/s and 16.5 m/s respectively. The driver of the first car blows a horn having a frequency 400 Hz. The frequency heard by the driver of the second car is [velocity of sound 340 m/s]: ____________.


A source of sound is moving with constant velocity of 30 mis emitting a note of frequency 256 Hz. The ratio of frequencies observed by a stationary observer while the source is approaching him and after it crosses him is ______. (speed of sound in air = 330 m/s)


A bus is moving with a velocity of 5 m is towards a wall. The driver blows the horn of frequency 165 Hz. If the speed of sound in air is 335 m is, then after reflection of sound wave, the number of beats per second heard by the passengers in the bus will be ______.


If a star appearing yellow starts accelerating towards the earth, its colour appears to be turned ______.


With what velocity an observer should move relative to a stationary source so that a sound of double the frequency of source is heard by an observer?


A train whistling at constant frequency is moving towards a station at a constant speed V. The train goes past a stationary observer on the station. The frequency n ′ of the sound as heard by the observer is plotted as a function of time t (figure). Identify the expected curve.


In a quink tube experiment, a tuning fork of frequency 300 Hz is vibrated at one end. It is observed that intensity decreases from maximum to 50% of its maximum value, as tube is moved by 6.25 cm. Velocity of sound is ______ m/s.


The period of rotation of the sun at its equator is T and its radius is R. Then the Doppler wavelength shift expected for light with wavelength λ emitted from the edge of the sun's disc is: [c = speed of light]


A racing car moving towards a cliff sounds its horn. The sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If V is the velocity of sound, the velocity of the car is ______.


A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed v ms-1. The velocity of sound in air is 300 ms-1. If the person can hear frequencies up to a maximum of 10,000 HZ, the maximum value of v up to which he can hear the whistle is ______.


The observer is moving with velocity 'v0' towards the stationary source of sound and then after crossing moves away from the source with velocity 'v0'. Assume that the medium through which the sound waves travel is at rest. If v is the velocity of sound and n is the frequency emitted by the source, then the difference between apparent frequencies heard by the observer is ______.


The pitch of the whistle of an engine appears to drop by 20% of its original value when it passes a stationary observer. If the speed of sound in the air is 350 m/s, then the speed of the engine (in m/s) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×