Advertisements
Advertisements
Question
The dimensions of a cuboid are in the ratio 5 : 3 : 1 and its total surface area is 414 m2. Find the dimensions.
Solution
\[\text { It is given that the sides of the cuboid are in the ratio 5: 3: 1 } . \]
\[\text { Suppose that its sides are x multiple of each other, then we have: } \]
\[\text { Length = 5x m } \]
\[\text { Breadth = 3x m } \]
\[\text { Height = x m }\]
\[\text { Also, total surface area of the cuboid = 414 }m^2 \]
\[\text { Surface area of the cuboid = 2 }\times (\text { length } \times \text { breadth + breadth } \times \text { height + length }\times \text { height })\]
\[ \Rightarrow 414 = 2 \times (5x \times 3x + 3x \times 1x + 5x \times x)\]
\[ \Rightarrow 414 = 2 \times (15 x^2 + 3 x^2 + 5 x^2 ) \]
\[ \Rightarrow 414 = 2 \times (23 x^2 ) \]
\[ \Rightarrow 2 \times (23 \times x^2 ) = 414 \]
\[ \Rightarrow (23 \times x^2 ) = \frac{414}{2} = 207\]
\[ \Rightarrow x^2 =\frac{207}{23} = 9\]
\[ \Rightarrow x = \sqrt{9} = 3\]
\[\text { Therefore, we have the following: }\]
\[\text { Lenght of the cuboid = 5 } \times x = 5 \times 3 = 15 m \]
\[\text { Breadth of the cuboid = 3 } \times x = 3 \times 3 = 9 m \]
\[\text { Height of the cuboid = x = 1 } \times 3 = 3 m\]
APPEARS IN
RELATED QUESTIONS
The length of a hall is 18 m and the width 12 m. The sum of the areas of the floor and the
flat roof is equal to the sum of the areas of the four walls. Find the height of the hall.
A wooden bookshelf has external dimensions as follows: Height = 110 cm, Depth = 25 cm, Breadth = 85 cm in following figure. The thickness of the plank is 5 cm everywhere. The external faces are to be polished and the inner faces are to be painted. If the rate of polishing is 20 paise per cm2 and the rate of painting is 10 paise per cm2. Find the total expenses required for polishing and painting the surface of the bookshelf.
What will happen to the volume of a cuboid if its Length is doubled, height is same and breadth is halved?
How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick?
The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.
10 cubic metres clay is uniformly spread on a land of area 10 ares. the rise in the level of the ground is
If A1, A2, and A3 denote the areas of three adjacent faces of a cuboid, then its volume is
A tank 30 m long, 24 m wide, and 4.5 m deep is to be made. It is open from the top. Find the cost of iron-sheet required, at the rate of ₹ 65 per m2, to make the tank.
The internal length, breadth, and height of a closed box are 1 m, 80 cm, and 25 cm. respectively. If its sides are made of 2.5 cm thick wood; find :
(i) the capacity of the box
(ii) the volume of wood used to make the box.
375 persons can be accommodated in a room whose dimensions are in the ratio of 6 : 4 : 1. Calculate the area of the four walls of the room if the each person consumes 64m3 of air.