Advertisements
Advertisements
Question
The expression 2x3 + ax2 + bx – 2 leaves remainder 7 and 0 when divided by 2x – 3 and x + 2 respectively. Calculate the values of a and b.
Solution
Let f(x) = 2x3 + ax2 + bx – 2
2x – 3 = 0 `\implies x = 3/2`
On dividing f(x) by 2x – 3, it leaves a remainder 7.
∴ `2(3/2)^3 + a(3/2)^2 + b(3/2) - 2 = 7`
`27/4 + (9a)/4 + (3b)/2 = 9`
`(27 + 9a+ 6b)/4 = 9`
27 + 9a + 6b = 36
9a + 6b – 9 = 0
3a + 2b – 3 = 0 ...(1)
x + 2 = 0 `\implies` x = –2
On dividing f(x) by x + 2, it leaves a remainder 0.
∴ 2(–2)3 + a(–2)2 + b(–2) – 2 = 0
–16 + 4a – 2b – 2 = 0
4a – 2b – 18 = 0 ...(2)
Adding (1) and (2), we get,
7a – 21 = 0
a = 3
Subsituting the value of a in (1), we get,
3(3) + 2b – 3 = 0
9 + 2b – 3 = 0
2b = –6
b = –3
APPEARS IN
RELATED QUESTIONS
Find the remainder when x3 – ax2 + 6x – a is divided by x – a.
Find 'a' if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
If x3 + ax2 + bx + 6 has x – 2 as a factor and leaves a remainder 3 when divided by x – 3, find the values of a and b.
Using the Remainder Theorem, factorise the following completely:
4x3 + 7x2 – 36x – 63
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(x2 − 7x + 9) ; (x + 1)
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(2x3 − 2x2 + ax − a) ; (x − a)
Use remainder theorem and find the remainder when the polynomial g(x) = x3 + x2 – 2x + 1 is divided by x – 3.
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = x3 – 3x2 + 4x + 50, g(x) = x – 3
By Remainder Theorem find the remainder, when p(x) is divided by g(x), where p(x) = 4x3 – 12x2 + 14x – 3, g(x) = 2x – 1
Check whether p(x) is a multiple of g(x) or not:
p(x) = 2x3 – 11x2 – 4x + 5, g(x) = 2x + 1