Advertisements
Advertisements
Question
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find the distribution function
Solution
The distribution function F(x) = `int_-oo^x f(u) "d"u`
Case 1:
x < 0, F(x) = `int_-oo^x f(u) "d"u` = 0
Case 2:
x ≥ 0, F(x) = `int_-oo^x f(u) "d"u`
= `int_-oo^0 f(u) "d"u + int_0^x f(u) "d"u`
= `0 + k int_0^x "e"^((-u)/3) "d"u`
= `1/3 [("e"^((-u)/3))/((-1)/3)]_0^x`
= `- ("e"^((-x)/3) - 1)`
= `1 - "e"^((- x)/3)`
APPEARS IN
RELATED QUESTIONS
The probability density function of X is given by
`f(x) = {{:(kx"e"^(-2x), "for" x > 0),(0, "for" x ≤ 0):}`
Find the value of k
The probability density function of X is `f(x) = {(x, 0 < x < 1),(2 - x, 1 ≤ x ≤ 2),(0, "otherwise"):}`
Find P(0.2 ≤ X < 0.6)
The probability density function of X is `f(x) = {(x, 0 < x < 1),(2 - x, 1 ≤ x ≤ 2),(0, "otherwise"):}`
Find P(1.2 ≤ X < 1.8)
The probability density function of X is `f(x) = {(x, 0 < x < 1),(2 - x, 1 ≤ x ≤ 2),(0, "otherwise"):}`
Find P(0.5 ≤ X < 1.5)
Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function
`f(x) = {{:(k, 200 ≤ x ≤ 600),(0, "otherwise"):}`
Find the distribution function
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find the value of k
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find P(X < 3)
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find P(5 ≤ X)
The probability density function of X is given by
`f(x) = {(k"e"^(- x/3), "for" x > 0),(0,"for" x ≤ 0):}`
Find P(X ≤ 4)
If X is the random variable with probability density function f(x) given by,
`f(x) = {{:(x + 1",", -1 ≤ x < 0),(-x +1",", 0 ≤ x < 1),(0, "otherwise"):}`
then find the distribution function F(x)
If X is the random variable with distribution function F(x) given by,
F(x) = `{{:(0",", - oo < x < 0),(1/2(x^2 + x)",", 0 ≤ x ≤ 1),(1",", 1 ≤ x < oo):}`
then find the probability density function f(x)
Choose the correct alternative:
A rod of length 2l is broken into two pieces at random. The probability density function of the shorter of the two pieces is
`f(x) = {{:(1/l, 0 < x < l),(0, l ≤ x < 2l):}`
The mean and variance of the shorter of the two pieces are respectively
Choose the correct alternative:
The random variable X has the probability density function
`f(x) = {{:("a"x + "b", 0 < x < 1),(0, "otherwise"):}`
and E(X) = `7/12`, then a and b are respectively
Choose the correct alternative:
If `f(x) = {{:(2x, 0 ≤ x ≤ "a"),(0, "otherwise"):}` is a probability density function of a random variable, then the value of a is