Advertisements
Advertisements
Question
The reflection of the point (α, β, γ) in the xy-plane is ______.
Options
(α, β, 0)
(0, 0, γ)
(–α, –β, γ)
(α, β, –γ)
Solution
The reflection of the point (α, β, γ) in the xy– plane is (α, β, –γ).
Explanation:
Reflection of point (α, β, γ) in xy-plane is (α, β, –γ).
APPEARS IN
RELATED QUESTIONS
Show that the angle between any two diagonals of a cube is `cos^-1(1/3)`
Find the coordinates of the point, where the line `(x-2)/3=(y+1)/4=(z-2)/2` intersects the plane x − y + z − 5 = 0. Also find the angle between the line and the plane.
Find the acute angle between the plane 5x − 4y + 7z − 13 = 0 and the y-axis.
Find the angle between the planes whose vector equations are `vecr.(2hati + 2hatj - 3hatk) = 5 and hatr.(3hati - 3hatj + 5hatk) = 3`
Find the angle between the line `(x - 1)/3 = (y + 1)/2 = (z + 2)/4` and the plane 2x + y − 3z + 4 = 0.
If the line \[\frac{x - 3}{2} = \frac{y + 2}{- 1} = \frac{z + 4}{3}\] lies in the plane \[lx + my - z =\] then find the value of \[l^2 + m^2\] .
Find the angle between the lines `vec"r" = 3hat"i" - 2hat"j" + 6hat"k" + lambda(2hat"i" + hat"j" + 2hat"k")` and `vec"r" = (2hat"j" - 5hat"k") + mu(6hat"i" + 3hat"j" + 2hat"k")`
The sine of the angle between the straight line `(x - 2)/3 = (y - 3)/4 = (z - 4)/5` and the plane 2x – 2y + z = 5 is ______.
The angle between the line `vec"r" = (5hat"i" - hat"j" - 4hat"k") + lambda(2hat"i" - hat"j" + hat"k")` and the plane `vec"r".(3hat"i" - 4hat"j" - hat"k") + 5` = 0 is `sin^-1 (5/(2sqrt(91)))`.
The angle between the planes `vec"r".(2hat"i" - 3hat"j" + hat"k")` = 1 and `vec"r"(hat"i" - hat"j")` = 4 is `cos^-1 ((-5)/sqrt(58))`.
A body of 6 kg rests in limiting equilibrium on an inclined plane whose slope is 30°. If the plane is raised to a slope of 60°, then the force along the plane to support the body is
Angle between two unit-magnitude coplanar vectors P(0.866, 0.500, 0) and Q(0.259, 0.966, 0) will be?
Find the intercepts cut off by the plane `2x + y - z` = 5
Find the equation of the plane with intercept 3 on the y-axis and parallel to zox plane.
Find the equation of the plane passing through the line of intersection of the planes `vecr * (hati + hatj + hatk)` = 1 and `vecr * (2hati + 3hatj - hatk) + 4` = 0 and parallel to x-axis
Find the distance of the point (–1, –5, –10) from the point of intersection of the line `vecr = 2hati - hatj - 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr * (hati - hatj + hatk)` = 5
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane `vecr * (hati + 2hatj + 5hatk) + 9` = 0
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr * (hati + hatj + hatk)` = 2
Find the equation of the plane passing through the line of intersection of the planes `vecr(hati + hatj + hatk)` = 10 and `vecr.(2hati + 3hatj - hatk)` + 4 = 0 and passing through (–2, 3, 1).