Advertisements
Advertisements
Question
The relationship between mean, median and mode for a moderately skewed distribution is.
Options
Mode = 2 Median - 3 Mean
Mode = Median - 2 Mean
Mode = 2 Median - Mean
Mode = 3 Median - 2 Mean
Solution
Mode = 3Median - 2Mean
APPEARS IN
RELATED QUESTIONS
One of the methods of determining mode is ______.
Find the mode from the following information:
L = 10, h = 2, f0 = 58, f1 = 70, f2 = 42.
Calculate the mode of the following distribution:
Class | 10 − 15 | 15 − 20 | 20 − 25 | 25 − 30 | 30 − 35 |
Frequency | 4 | 7 | 20 | 8 | 1 |
Find out the mode from the following data:
Wages (in ₹) | No. of persons |
125 | 3 |
175 | 8 |
225 | 21 |
275 | 6 |
325 | 4 |
375 | 2 |
Find the mode of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
The following table give the marks scored by students in an examination:
Marks | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 |
No. of students | 3 | 7 | 15 | 24 | 16 | 8 | 5 | 2 |
(i) Find the modal group
(ii) Which group has the least frequency?
For the following distribution
Marks | No. of students |
Less than 20 | 4 |
Less than 40 | 12 |
Less than 60 | 25 |
Less than 80 | 56 |
Less than 100 | 74 |
Less than 120 | 80 |
the modal class is?
In the formula `x-a+(sumf_i d_i)/(sumf_i),` for finding the mean of grouped data d1's are deviations from the ______.
For the following distribution:
Class | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 |
Frequency | 10 | 15 | 12 | 20 | 9 |
the upper limit of the modal class is:
The mode of a grouped frequency distribution is 75 and the modal class is 65-80. The frequency of the class preceding the modal class is 6 and the frequency of the class succeeding the modal class is 8. Find the frequency of the modal class.