Advertisements
Advertisements
Question
The speed of light depends ____________ .
Options
on elasticity of the medium only
on inertia of the medium only
on elasticity as well as inertia
neither on elasticity nor on inertia
Solution
neither on elasticity nor on inertia
The speed of light in any medium depends on the refractive index of that medium, which is an intensive property. Hence, speed of light is not affected by the elasticity and inertia of the medium.
APPEARS IN
RELATED QUESTIONS
Draw the sketches to differentiate between plane wavefront and spherical wavefront.
Is the colour of 620 nm light and 780 nm light same? Is the colour of 620 nm light and 621 nm light same? How many colours are there in white light?
The wavelength of light in a medium is \[\lambda = \lambda_0 /\mu,\] where \[\lambda \] is the wavelength in vacuum. A beam of red light \[\left( \lambda_0 = 720\text{ nm} \right)\] enters water. The wavelength in water is \[\lambda = \lambda_0 /\mu = 540\text{ nm.}\] To a person under water, does this light appear green?
If we put a cardboard (say 20 cm × 20 cm) between a light source and our eyes, we can't see the light. But when we put the same cardboard between a sound source and out ear, we hear the sound almost clearly. Explain.
TV signals broadcast by a Delhi studio cannot be directly received at Patna, which is about 1000 km away. But the same signal goes some 36000 km away to a satellite, gets reflected and is then received at Patna. Explain.
Is it necessary to have two waves of equal intensity to study interference pattern? Will there be an effect on clarity if the waves have unequal intensity?
An amplitude modulated (AM) radio wave bends appreciably round the corners of a 1 m × 1 m board but a frequency modulated (FM) wave only bends negligibly. If the average wavelengths of the AM and FM waves are \[\lambda_a and \lambda_f,\]
A light wave can travel
(a) in vacuum
(b) in vacuum only
(c) in a material medium
(d) in a material medium only
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Find the range of frequency of light that is visible to an average human being
\[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]
A parallel beam of light of wavelength 560 nm falls on a thin film of oil (refractive index = 1.4). What should be the minimum thickness of the film so that it strongly reflects the light?
A glass surface is coated by an oil film of uniform thickness 1.00 × 10−4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Find the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence.
Answer in brief:
The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 mm by how much will the distance change if light of wavelength 4800 Å is used?
Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?
When light travels from an optically rarer medium to an optically denser medium, the speed decreases because of change in ______
Light follows wave nature because ______
Which of the following cannot produce two coherent sources?
Two vectors of the same magnitude have a resultant equal to either of the two vectors. The angle between two vectors is
Emission and absorption is best described by ______.