Advertisements
Advertisements
Question
The sum of two numbers is 9 and the sum of their squares is 41. Taking one number as x, form ail equation in x and solve it to find the numbers.
Solution
Sum of two numbers = 9
Let first number = x
then second number = 9 – x
Now according to the condition,
(x)2 + (9 - x)2 = 41
⇒ x2 + 81 - 18x + x2 - 41 = 0
⇒ 2x2 - 18x + 40 = 0
⇒ x2 - 9x + 20 = 0 ...(Dividing by 2)
⇒ x2 - 4x - 5x + 20 = 0
⇒ (x - 4) -5(x - 4) = 0
⇒ (x - 4) (x - 5) = 0
Either x - 4 = 0,
then x = 4
or
x - 5 = 0,
then x = 5
(i) If x = 4, then first number = 4
and second number = 9 - 4 = 5
(ii) If x = 5, then first number = 5
ans second number = 9 - 5 = 4
Hence numbers are 4 and 5.
APPEARS IN
RELATED QUESTIONS
Solve the following quadratic equation for x: x2 – 2ax – (4b2 – a2) = 0
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects
Solve : x2 – 11x – 12 =0; when x ∈ N
Solve for x: `3x^2-2sqrt3x+2=0`
Find the values of k for which the quadratic equation
\[\left( 3k + 1 \right) x^2 + 2\left( k + 1 \right)x + 1 = 0\] has equal roots. Also, find the roots.
Find the value of p for which the quadratic equation
\[\left( p + 1 \right) x^2 - 6(p + 1)x + 3(p + 9) = 0, p \neq - 1\] has equal roots. Hence, find the roots of the equation.
Disclaimer: There is a misprinting in the given question. In the question 'q' is printed instead of 9.
Solve the following equation: `"a"/("x" - "a") + "b"/("x" - "b") = (2"c")/("x" - "c")`
Solve the equation:
`6(x^2 + (1)/x^2) -25 (x - 1/x) + 12 = 0`.
Solve the following equation by factorization
2x2 – 8x – 24 = 0 when x∈I
Solve the following equation by factorization.
a2x2 + 2ax + 1 = 0, a ≠ 0