Advertisements
Advertisements
Question
The surface area of a sphere of radius 5 cm is five times the area of the curved surface of a cone of radius 4 cm. Find the height of the cone.
Solution
In the given problem, we are given a sphere and a cone of the following dimensions:
Radius of the sphere (rs) = 5 cm
So, surface area of the sphere = `4 pi r^2 ,`
`= 4 pi (5)^2`
= 100 π cm2
Also, radius of the cone base (rc) = 4 cm
So, curved surface area of the cone = `pi r_cl`
` = 4 πl `
Now, it is given that the surface area of the sphere is 5 times the curved surface are of the cone. So, we get
`100 pi = (5) (4pi l) `
` l=100/20`
` l = 5 cm `
Now, slant height (l) of a cone is given by the formula:
`l = sqrt(r^2 + h^2 )`
So, let us take the height of the cone as h,
We get,
`5=sqrt(4)^2 +(h)^2`
Squaring both sides,
`(5)^2 = (sqrt(16+(h)^2))^2`
25 = 16 + h2
h2 = 25-16
h2 = 9
Further, solving for h
` h = sqrt(9)`
h = 3 cm
Therefore, height of the cone is 3 cm .
APPEARS IN
RELATED QUESTIONS
Find the total surface area of a hemisphere of radius 10 cm. [Use π = 3.14]
On a map drawn to a scale of 1: 50,000, a rectangular plot of land ABCD has the following dimensions. AB = 6 cm; BC = 8 cm and all angles are right angles. Find:
1) the actual length of the diagonal distance AC of the plot in km.
2) the actual area of the plot in sq. km.
The ratio of the total surface area of a sphere and a hemisphere of same radius is
The largest sphere is cut off from a cube of side 6 cm. The volume of the sphere will be
If the surface area of a sphere is 144π m2, then its volume (in m3) is
If the surface area of a sphere is 2826 cm2 then find its volume. ( π= 3.14)
Find the radius of the sphere whose surface area is equal to its volume .
From a rectangular solid of metal 42 cm by 30 cm by 20 cm, a conical cavity of diameter 14 cm and depth 24 cm is drilled out. Find: the weight of the material drilled out if it weighs 7 gm per cm3.
A solid, consisting of a right circular cone standing on a hemisphere, is placed upright, in a right circular cylinder, full of water and touches the bottom. Find the volume of water left in the cylinder, having given that the radius of the cylinder is 3 cm and its height is 6 cm; the radius of the hemisphere is 2 cm and the height of the cone is 4 cm. Give your answer to the nearest cubic centimetre.
A manufacturing company prepares spherical ball bearings, each of radius 7 mm and mass 4 gm. These ball bearings are packed into boxes. Each box can have maximum of 2156 cm3 of ball bearings. Find the:
- maximum number of ball bearings that each box can have.
- mass of each box of ball bearings in kg.
(use π = `22/7`)