Advertisements
Advertisements
Question
A manufacturing company prepares spherical ball bearings, each of radius 7 mm and mass 4 gm. These ball bearings are packed into boxes. Each box can have maximum of 2156 cm3 of ball bearings. Find the:
- maximum number of ball bearings that each box can have.
- mass of each box of ball bearings in kg.
(use π = `22/7`)
Solution
a. No. of ball bearings = `2156/(4/3 xx π xx r^3)`
= `2156/(4/3 xx 22/7 xx (7/10)^3`
= `(2156 xx 3 xx 7 xx 10 xx 10 xx 10)/(4 xx 22 xx 7 xx 7 xx 7)`
= 1500
b. Mass of each box = 4 gm × 1500 = 6 kg
APPEARS IN
RELATED QUESTIONS
A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate the number of cones recast.
Find the surface area of a sphere of radius 5.6 cm .
Find the surface area of a sphere of diameter 3.5 cm .
Assuming the earth to be a sphere of radius 6370 km, how many square kilo metres is area
of the land, if three-fourth of the earth’s surface is covered by water?
The diameter of the moon is approximately one fourth of the diameter of the earth. Find the
ratio of their surface areas.
The volume of one sphere is 27 times that of another sphere. Calculate the ratio of their :
- radii,
- surface areas.
If the number of square centimeters on the surface of a sphere is equal to the number of cubic centimeters in its volume, what is the diameter of the sphere?
A hollow sphere of internal and external radii 6 cm and 8 cm respectively is melted and recast into small cones of base radius 2 cm and height 8 cm. Find the number of cones.
What is the least number of solid metallic spheres, each of 6 cm diameter, that should be melted and recast to form a solid metal cone whose height is 45 cm and diameter 12 cm?
Find the radius of a sphere whose surface area is 154 cm2.
If a sphere is inscribed in a cube, find the ratio of the volume of cube to the volume of the sphere.
The total surface area of a hemisphere of radius r is
If a solid sphere of radius r is melted and cast into the shape of a solid cone of height r, then the radius of the base of the cone is
Find the surface area and volume of sphere of the following radius. (π = 3.14)
4 cm
Find the volume of a sphere, if its surface area is 154 sq.cm.
The total area of a solid metallic sphere is 1256 cm2. It is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate: the number of cones recasted [π = 3.14]
A certain number of metallic cones, each of radius 2 cm and height 3 cm are melted and recast into a solid sphere of radius 6 cm. Find the number of cones used.
A conical tent is to accommodate 77 persons. Each person must have 16 m3 of air to breathe. Given the radius of the tent as 7 m, find the height of the tent and also its curved surface area.
A solid sphere is cut into two identical hemispheres.
Statement 1: The total volume of two hemispheres is equal to the volume of the original sphere.
Statement 2: The total surface area of two hemispheres together is equal to the surface area of the original sphere.
Which of the following is valid?