Advertisements
Advertisements
Question
A solid sphere is cut into two identical hemispheres.
Statement 1: The total volume of two hemispheres is equal to the volume of the original sphere.
Statement 2: The total surface area of two hemispheres together is equal to the surface area of the original sphere.
Which of the following is valid?
Options
Both the statements are true.
Both the statements are false.
Statement 1 is true and Statement 2 is false.
Statement 1 is false and Statement 2 is true.
Solution
Statement 1 is true and Statement 2 is false.
Explanation:
Statement 1: The total volume of two hemispheres is equal to the volume of the original sphere.
The volume V of a sphere with radius r is given by:
`V = 4/3πr^3`
When a sphere is cut into two hemispheres, each hemisphere will have half the volume of the original sphere.
Therefore, the volume of one hemisphere is:
`V_("hemisphere") = 1/2 xx 4/3πr^3 = 2/3πr^3`
Since there are two hemispheres, the total volume of the two hemispheres is:
This is equal to the volume of the original sphere.
Thus, Statement 1 is true.
Statement 2: The total surface area of two hemispheres together is equal to the surface area of the original sphere.
The surface area A of a sphere with radius r is given by:
A = 4πr2
When the sphere is cut into two hemispheres, each hemisphere will have:
- A curved surface area: 2πr2
- A flat circular base area: πr2
The total surface area of one hemisphere is:
`V_("hemisphere") = 2πr^2 + πr^2 = 3πr^2`
Since there are two hemispheres, the total surface area of the two hemispheres is:
2 × 3πr2 = 6πr2
This is more than the surface area of the original sphere, which is 4πr2.
The additional area comes from the flat circular bases of the hemispheres.
Thus, Statement 2 is false.
APPEARS IN
RELATED QUESTIONS
Find the surface area of a sphere of radius 5.6 cm.
`["Assume "pi=22/7]`
Find the total surface area of a hemisphere of radius 10 cm. [Use π = 3.14]
A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl.
`["Assume "pi = 22/7]`
Find the surface area of a sphere of radius 5.6 cm .
Find the surface area of a sphere of diameter 21 cm .
Find the surface area of a sphere of diameter 3.5 cm .
A cylinder of same height and radius is placed on the top of a hemisphere. Find the curved
surface area of the shape if the length of the shape be 7 cm.
The diameter of the moon is approximately one fourth of the diameter of the earth. Find the
ratio of their surface areas.
A hemi-spherical dome of a building needs to be painted. If the circumference of the base of
the dome is 17.6 cm, find the cost of painting it, given the cost of painting is Rs. 5 per l00
`cm^2`
Metallic spheres of radii 6 cm, 8 cm and 10 cm respectively are melted and recasted into a single solid sphere. Taking π = 3.1, find the surface area of the solid sphere formed.
A hemi-spherical bowl has negligible thickness and the length of its circumference is 198 cm. Find the capacity of the bowl.
Find the maximum volume of a cone that can be carved out of a solid hemisphere of radius r cm.
What is the least number of solid metallic spheres, each of 6 cm diameter, that should be melted and recast to form a solid metal cone whose height is 45 cm and diameter 12 cm?
The cross-section of a tunnel is a square of side 7 m surmounted by a semi-circle as shown in the adjoining figure. The tunnel is 80 m long.
Calculate:
- its volume,
- the surface area of the tunnel (excluding the floor) and
- its floor area.
If a sphere is inscribed in a cube, then the ratio of the volume of the sphere to the volume of the cube is
Find the surface area and volume of sphere of the following radius. (π = 3.14 )
3.5 cm
A solid metallic cylinder has a radius of 2 cm and is 45 cm tall. Find the number of metallic spheres of diameter 6 cm that can be made by recasting this cylinder .
Find the volume of the hollow sphere whose inner diameter is 8 cm and the thickness of the material of which it is made is 1 cm .
A certain number of metallic cones, each of radius 2 cm and height 3 cm are melted and recast into a solid sphere of radius 6 cm. Find the number of cones used.