Advertisements
Advertisements
प्रश्न
A solid sphere is cut into two identical hemispheres.
Statement 1: The total volume of two hemispheres is equal to the volume of the original sphere.
Statement 2: The total surface area of two hemispheres together is equal to the surface area of the original sphere.
Which of the following is valid?
पर्याय
Both the statements are true.
Both the statements are false.
Statement 1 is true and Statement 2 is false.
Statement 1 is false and Statement 2 is true.
उत्तर
Statement 1 is true and Statement 2 is false.
Explanation:
Statement 1: The total volume of two hemispheres is equal to the volume of the original sphere.
The volume V of a sphere with radius r is given by:
`V = 4/3πr^3`
When a sphere is cut into two hemispheres, each hemisphere will have half the volume of the original sphere.
Therefore, the volume of one hemisphere is:
`V_("hemisphere") = 1/2 xx 4/3πr^3 = 2/3πr^3`
Since there are two hemispheres, the total volume of the two hemispheres is:
This is equal to the volume of the original sphere.
Thus, Statement 1 is true.
Statement 2: The total surface area of two hemispheres together is equal to the surface area of the original sphere.
The surface area A of a sphere with radius r is given by:
A = 4πr2
When the sphere is cut into two hemispheres, each hemisphere will have:
- A curved surface area: 2πr2
- A flat circular base area: πr2
The total surface area of one hemisphere is:
`V_("hemisphere") = 2πr^2 + πr^2 = 3πr^2`
Since there are two hemispheres, the total surface area of the two hemispheres is:
2 × 3πr2 = 6πr2
This is more than the surface area of the original sphere, which is 4πr2.
The additional area comes from the flat circular bases of the hemispheres.
Thus, Statement 2 is false.
APPEARS IN
संबंधित प्रश्न
Find the surface area of a sphere of radius 14 cm.
`["Assume "pi=22/7]`
Find the total surface area of a hemisphere of radius 10 cm. [Use π = 3.14]
On a map drawn to a scale of 1: 50,000, a rectangular plot of land ABCD has the following dimensions. AB = 6 cm; BC = 8 cm and all angles are right angles. Find:
1) the actual length of the diagonal distance AC of the plot in km.
2) the actual area of the plot in sq. km.
Find the surface area of a sphere of diameter 21 cm .
Assuming the earth to be a sphere of radius 6370 km, how many square kilo metres is area
of the land, if three-fourth of the earth’s surface is covered by water?
A cylinder of same height and radius is placed on the top of a hemisphere. Find the curved
surface area of the shape if the length of the shape be 7 cm.
A solid is in the form of a cone standing on a hemi-sphere with both their radii being equal to 8 cm and the height of cone is equal to its radius. Find, in terms of π, the volume of the solid.
The diameter of a sphere is 6 cm. It is melted and drawn into a wire of diameter 0.2 cm. Find the length of the wire.
The cross-section of a tunnel is a square of side 7 m surmounted by a semi-circle as shown in the adjoining figure. The tunnel is 80 m long.
Calculate:
- its volume,
- the surface area of the tunnel (excluding the floor) and
- its floor area.
If a sphere is inscribed in a cube, find the ratio of the volume of cube to the volume of the sphere.
A sphere and a cube are of the same height. The ratio of their volumes is
If the surface area of a sphere is 144π m2, then its volume (in m3) is
A hemispherical and a conical hole is scooped out of a.solid wooden cylinder. Find the volume of the remaining solid where the measurements are as follows:
The height of the solid cylinder is 7 cm, radius of each of hemisphere, cone and cylinder is 3 cm. Height of cone is 3 cm.
Give your answer correct to the nearest whole number.Taken`pi = 22/7`.
From a rectangular solid of metal 42 cm by 30 cm by 20 cm, a conical cavity of diameter 14 cm and depth 24 cm is drilled out. Find: the weight of the material drilled out if it weighs 7 gm per cm3.
A certain number of metallic cones, each of radius 2 cm and height 3 cm are melted and recast into a solid sphere of radius 6 cm. Find the number of cones used.
A sphere cut out from a side of 7 cm cubes. Find the volume of this sphere?
The cylinder of radius 12 cm have filled the 20 cm with water. One piece of iron drop in the stands of water goes up 6.75 cm. Find the radius of sphere piece.
The internal and external diameters of a hollow hemispherical vessel are 20 cm and 28 cm respectively. Find the cost to paint the vessel all over at ₹ 0.14 per cm2