Advertisements
Advertisements
Question
The taxi fare in a city is as follows:- For the first kilometre, the fare is Rs. 8 and for the subsequent distance it is Rs. 5 per km. Taking the distance covered as x km and total fare as Rs y, write a linear equation for this information, and draw its graph.
Solution
Total distance covered = x km
Fare for 1st kilometre = Rs 8
Fare for the rest of the distance = Rs (x − 1) 5
Total fare = Rs [8 + (x − 1) 5]
y = 8 + 5x − 5
y = 5x + 3
5x − y + 3 = 0
It can be observed that point (0, 3) and (-3/5, 0) satisfies the above equation. Therefore, these are the solutions of this equation.
x | 0 | -3/5 |
y | 3 | 0 |
The graph of this equation is constructed as follows.
Here, it can be seen that variable x and y are representing the distance covered and the fare paid for that distance respectively and these quantities may not be negative. Hence, only those values of x and y which are lying in the 1st quadrant will be considered.
APPEARS IN
RELATED QUESTIONS
Yamini and Fatima, two students of Class IX of a school, together contributed Rs. 100 towards the Prime Minister’s Relief Fund to help the earthquake victims. Write a linear equation which satisfies this data. (You may take their contributions as Rs. x and Rs. y.) Draw the graph of the same.
Draw the graph of the following linear equation in two variable : –x + y = 6
Draw the graph of the equatio ` x / y + y /4 = 1` Also, find the area of the triangle formed by the
line and the co-ordinates axes.
Draw the graph for the equation, given below :
3x + 2y = 6
Draw the graph obtained from the table below:
X | a | 3 | - 5 | 5 | c | - 1 |
Y | - 1 | 2 | b | 3 | 4 | 0 |
Use the graph to find the values of a, b and c. State a linear relation between the variables x and y.
A straight line passes through the points (2, 4) and (5, - 2). Taking 1 cm = 1 unit; mark these points on a graph paper and draw the straight line through these points. If points (m, - 4) and (3, n) lie on the line drawn; find the values of m and n.
Draw the graph for each of the following equation: Also, find the coordinates of the points where the graph of the equation meets the coordinate axes:
`(1)/(2) x + (1)/(3) y` = 1
Find the values.
y = x + 3
x | 0 | − 2 | ||
y | 0 | − 3 |
The graph of the linear equation x + 2y = 7 passes through the point (0, 7).
The graph of every linear equation in two variables need not be a line.