Advertisements
Advertisements
Question
Two natural numbers r, s are drawn one at a time, without replacement from the set S = {1, 2, 3, ...., n}. Find P[r ≤ p|s ≤ p], where p ∈ S.
Solution
Given that: S = {1, 2, 3, ..., n}
∴ P(r ≤ p|s ≤ p) = `("P"("P" ∩ "S"))/("P"("S"))`
= `("p" - 1)/"n" xx "n"/("n" - 1)`
= `("p" - 1)/("n" - 1)`
Hence, the required probability is `("p" - 1)/("n" - 1)`.
APPEARS IN
RELATED QUESTIONS
A coin is tossed 5 times. What is the probability of getting at least 3 heads?
A pair of dice is thrown 6 times. If getting a total of 9 is considered a success, what is the probability of at least 5 successes?
A fair coin is tossed 8 times, find the probability of at least six heads
A coin is tossed 5 times. What is the probability that head appears an even number of times?
A coin and a die are tossed. State sample space of following event.
A: Getting a head and an even number.
A coin and a die are tossed. State sample space of following event.
C: Getting a tail and perfect square.
Find total number of distinct possible outcomes n(S) of the following random experiment.
From a box containing 25 lottery tickets any 3 tickets are drawn at random.
Find total number of distinct possible outcomes n(S) of the following random experiment.
6 students are arranged in a row for a photograph.
Two dice are thrown. Write favourable outcomes for the following event.
Q: Sum of the numbers on two dice is 7.
Two dice are thrown. Write favourable outcomes for the following event.
R: Sum of the numbers on two dice is a prime number.
Also, check whether Events P and Q are mutually exclusive and exhaustive.
A card is drawn at random from an ordinary pack of 52 playing cards. State the number of elements in the sample space if consideration of suits is not taken into account.
Box-I contains 8 red (R11, R12, R13) and 2 blue (B11, B12) marbles while Box-II contains 2 red(R21, R22) and 4 blue (B21, B22, B23, B24) marbles. A fair coin is tossed. If the coin turns up heads, a marble is chosen from Box-I; if it turns up tails, a marble is chosen from Box-II. Describe the sample space.
There are 2 red and 3 black balls in a bag. 3 balls are taken out at random from the bag. Find the probability of getting 2 red and 1 black ball or 1 red and 2 black balls.
Prove that P(A) = `"P"("A" ∩ "B") + "P"("A" ∩ bar"B")`
Three dice are thrown at the sametime. Find the probability of getting three two’s, if it is known that the sum of the numbers on the dice was six.
Bag I contains 3 black and 2 white balls, Bag II contains 2 black and 4 white balls. A bag and a ball is selected at random. Determine the probability of selecting a black ball.
A box has 5 blue and 4 red balls. One ball is drawn at random and not replaced. Its colour is also not noted. Then another ball is drawn at random. What is the probability of second ball being blue?
Four cards are successively drawn without replacement from a deck of 52 playing cards. What is the probability that all the four cards are kings?
A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement the probability of getting exactly one red ball is ______.
Refer to Question 74 above. The probability that exactly two of the three balls were red, the first ball being red, is ______.
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is ______.
In a college, 30% students fail in physics, 25% fail in mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in physics if she has failed in mathematics is ______.
A box has 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
A card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is either ace or a king?
The letters of the word "ATTRACTION' are written randomly. The probability that no two T's appear together is
In year 2019, the probability of getting 53 Sundays is
Bag P contains 6 red and 4 blue balls and bag Q contains 5 red and 6 blue balls. A ball is transferred from bag P to bag Q and then a ball is drawn from bag Q. What is the probability that the ball drawn is blue?