English

Two Vertices of an Isosceles Triangle Are (2, 0) and (2, 5). Find the Third Vertex If the Length of the Equal Sides is 3. - Mathematics

Advertisements
Advertisements

Question

Two vertices of an isosceles triangle are (2, 0) and (2, 5). Find the third vertex if the length of the equal sides is 3.

Solution 1

The distance d between two points `(x_1,y_1)` and `(x_2, y_2)` is given by the formula

`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`

In an isosceles triangle two sides will be of equal length.

Here two vertices of the triangle is given as (20) and (25). Let the third side of the triangle be C(x, y)

It is given that the length of the equal sides is 3 units.

Let us now find the length of the side in which both the vertices are known.

`AB = sqrt((2 - 2)^2 + (0 - 5)^2)`

`= sqrt((0)^2 + (-5)^2)`

`= sqrt(0 + 25)`

`= sqrt25`

AB = 5

So, now we know that the side ‘AB’ is not one of the equal sides of the isosceles triangle.

So, we have  AC = BC

`AC = sqrt((2 - x)^2 + (0 - y)^2)`

`BC = sqrt((2 - x)^2 + (5 - y)^2)`

Equating these two equations we have,

`sqrt((2 - x)^2 + (0 - y)^2) = sqrt((2 - x)^2 + (5 - y)^2)`

Squaring on both sides of the equation we have,

`(2 - x)^2 + (0 - y)^2 = (2 - x)^2 + (5 - y)^2`

`4 + x^2 - 4x + y^2 = 4 + x^2 - 4x + 25 + y^2 - 10y`

10y = 25

`y = 5/2`

y = 2.5

We know that the length of the equal sides is 3 units. So substituting the value of ‘y’ in equation for either ‘AC’ or ‘BC’ we can get the value of ‘x’.

`AC = sqrt((2 - x)^2 + (0 - y)^2)`

`3 = sqrt((2 -x)^2 + (-5/2)^2)`

Squaring on both sides,

`9 = 4 + x^2 - 4x + 25/4`

`5 = x^2 - 4x + 25/4`

`20 = 4x^2 - 16x + 25`

`-5 = 4x^2 - 16x`

We have a quadratic equation for ‘x’. Solving for roots of the above equation we have,

`4x^2 - 16x + 5 = 0

`x = (16+-sqrt(256 - 4(4)(5)))/8`

` = (16 +- sqrt176)/8`

`= (16 +- 4sqrt11)/8`

`x = 2 +- sqrt(11)/2`

Hence the possible co−ordinates of the third vertex of the isosceles triangle are `(2 + sqrt11/2, 5/2)` or `(2 - sqrt11/2, 5/2)`

shaalaa.com

Solution 2

The distance d between two points `(x_1,y_1)` and `(x_2, y_2)` is given by the formula

`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`

In an isosceles triangle two sides will be of equal length.

Here two vertices of the triangle is given as (20) and (25). Let the third side of the triangle be C(x, y)

It is given that the length of the equal sides is 3 units.

Let us now find the length of the side in which both the vertices are known.

`AB = sqrt((2 - 2)^2 + (0 - 5)^2)`

`= sqrt((0)^2 + (-5)^2)`

`= sqrt(0 + 25)`

`= sqrt25`

AB = 5

So, now we know that the side ‘AB’ is not one of the equal sides of the isosceles triangle.

So, we have  AC = BC

`AC = sqrt((2 - x)^2 + (0 - y)^2)`

`BC = sqrt((2 - x)^2 + (5 - y)^2)`

Equating these two equations we have,

`sqrt((2 - x)^2 + (0 - y)^2) = sqrt((2 - x)^2 + (5 - y)^2)`

Squaring on both sides of the equation we have,

`(2 - x)^2 + (0 - y)^2 = (2 - x)^2 + (5 - y)^2`

`4 + x^2 - 4x + y^2 = 4 + x^2 - 4x + 25 + y^2 - 10y`

10y = 25

`y = 5/2`

y = 2.5

We know that the length of the equal sides is 3 units. So substituting the value of ‘y’ in equation for either ‘AC’ or ‘BC’ we can get the value of ‘x’.

`AC = sqrt((2 - x)^2 + (0 - y)^2)`

`3 = sqrt((2 -x)^2 + (-5/2)^2)`

Squaring on both sides,

`9 = 4 + x^2 - 4x + 25/4`

`5 = x^2 - 4x + 25/4`

`20 = 4x^2 - 16x + 25`

`-5 = 4x^2 - 16x`

We have a quadratic equation for ‘x’. Solving for roots of the above equation we have,

`4x^2 - 16x + 5 = 0

`x = (16+-sqrt(256 - 4(4)(5)))/8`

` = (16 +- sqrt176)/8`

`= (16 +- 4sqrt11)/8`

`x = 2 +- sqrt(11)/2`

Hence the possible co−ordinates of the third vertex of the isosceles triangle are `(2 + sqrt11/2, 5/2)` or `(2 - sqrt11/2, 5/2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.2 | Q 15 | Page 15

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

On which axis do the following points lie?

Q(0, -2)


The coordinates of the point P are (−3, 2). Find the coordinates of the point Q which lies on the line joining P and origin such that OP = OQ.


Which point on the y-axis is equidistant from (2, 3)  and (−4, 1)?


The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.


Find the third vertex of a triangle, if two of its vertices are at (−3, 1) and (0, −2) and the centroid is at the origin.

 

 

Find the value of x such that PQ = QR where the coordinates of P, Q and R are (6, -1), (1, 3) and (x, 8) respectively.


Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points (-2, -1), (1, 0), (4, 3) and(1, 2) meet


The points A(2, 0), B(9, 1) C(11, 6) and D(4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


If A and B are (1, 4) and (5, 2) respectively, find the coordinates of P when AP/BP = 3/4.


Show that the following points are the vertices of a rectangle.

A (2, -2), B(14,10), C(11,13) and D(-1,1)


Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.


The line segment joining the points A(3,−4) and B(1,2) is trisected at the points P(p,−2) and Q `(5/3,q)`. Find the values of p and q.


If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.


In what ratio does y-axis divide the line segment joining the points (-4, 7) and (3, -7)?


If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.


If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.


Mark the correct alternative in each of the following:
The point of intersect of the coordinate axes is


If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.

 
 

Write the coordinates the reflections of points (3, 5) in X and Y -axes.

 

Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).

 

Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

Write the ratio in which the line segment doining the points A (3, −6), and B (5, 3) is divided by X-axis.


If A (1, 2) B (4, 3) and C (6, 6) are the three vertices of a parallelogram ABCD, find the coordinates of fourth vertex D.

 

If the points A (1,2) , O (0,0) and C (a,b) are collinear , then find  a : b.

 

The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is


If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =


The length of a line segment joining A (2, −3) and B is 10 units. If the abscissa of B is 10 units, then its ordinates can be


What is the form of co-ordinates of a point on the X-axis?


If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______


What are the coordinates of origin?


Point P(– 4, 2) lies on the line segment joining the points A(– 4, 6) and B(– 4, – 6).


Signs of the abscissa and ordinate of a point in the second quadrant are respectively.


A point both of whose coordinates are negative will lie in ______.


Points (1, –1) and (–1, 1) lie in the same quadrant.


The coordinates of a point whose ordinate is `-1/2` and abscissa is 1 are `-1/2, 1`.


Assertion (A): Mid-point of a line segment divides the line segment in the ratio 1 : 1

Reason (R): The ratio in which the point (−3, k) divides the line segment joining the points (− 5, 4) and (− 2, 3) is 1 : 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×