Advertisements
Advertisements
Question
Two vertices of an isosceles triangle are (2, 0) and (2, 5). Find the third vertex if the length of the equal sides is 3.
Solution 1
The distance d between two points `(x_1,y_1)` and `(x_2, y_2)` is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`
In an isosceles triangle two sides will be of equal length.
Here two vertices of the triangle is given as A (2, 0) and B (2, 5). Let the third side of the triangle be C(x, y)
It is given that the length of the equal sides is 3 units.
Let us now find the length of the side in which both the vertices are known.
`AB = sqrt((2 - 2)^2 + (0 - 5)^2)`
`= sqrt((0)^2 + (-5)^2)`
`= sqrt(0 + 25)`
`= sqrt25`
AB = 5
So, now we know that the side ‘AB’ is not one of the equal sides of the isosceles triangle.
So, we have AC = BC
`AC = sqrt((2 - x)^2 + (0 - y)^2)`
`BC = sqrt((2 - x)^2 + (5 - y)^2)`
Equating these two equations we have,
`sqrt((2 - x)^2 + (0 - y)^2) = sqrt((2 - x)^2 + (5 - y)^2)`
Squaring on both sides of the equation we have,
`(2 - x)^2 + (0 - y)^2 = (2 - x)^2 + (5 - y)^2`
`4 + x^2 - 4x + y^2 = 4 + x^2 - 4x + 25 + y^2 - 10y`
10y = 25
`y = 5/2`
y = 2.5
We know that the length of the equal sides is 3 units. So substituting the value of ‘y’ in equation for either ‘AC’ or ‘BC’ we can get the value of ‘x’.
`AC = sqrt((2 - x)^2 + (0 - y)^2)`
`3 = sqrt((2 -x)^2 + (-5/2)^2)`
Squaring on both sides,
`9 = 4 + x^2 - 4x + 25/4`
`5 = x^2 - 4x + 25/4`
`20 = 4x^2 - 16x + 25`
`-5 = 4x^2 - 16x`
We have a quadratic equation for ‘x’. Solving for roots of the above equation we have,
`4x^2 - 16x + 5 = 0
`x = (16+-sqrt(256 - 4(4)(5)))/8`
` = (16 +- sqrt176)/8`
`= (16 +- 4sqrt11)/8`
`x = 2 +- sqrt(11)/2`
Hence the possible co−ordinates of the third vertex of the isosceles triangle are `(2 + sqrt11/2, 5/2)` or `(2 - sqrt11/2, 5/2)`
Solution 2
The distance d between two points `(x_1,y_1)` and `(x_2, y_2)` is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`
In an isosceles triangle two sides will be of equal length.
Here two vertices of the triangle is given as A (2, 0) and B (2, 5). Let the third side of the triangle be C(x, y)
It is given that the length of the equal sides is 3 units.
Let us now find the length of the side in which both the vertices are known.
`AB = sqrt((2 - 2)^2 + (0 - 5)^2)`
`= sqrt((0)^2 + (-5)^2)`
`= sqrt(0 + 25)`
`= sqrt25`
AB = 5
So, now we know that the side ‘AB’ is not one of the equal sides of the isosceles triangle.
So, we have AC = BC
`AC = sqrt((2 - x)^2 + (0 - y)^2)`
`BC = sqrt((2 - x)^2 + (5 - y)^2)`
Equating these two equations we have,
`sqrt((2 - x)^2 + (0 - y)^2) = sqrt((2 - x)^2 + (5 - y)^2)`
Squaring on both sides of the equation we have,
`(2 - x)^2 + (0 - y)^2 = (2 - x)^2 + (5 - y)^2`
`4 + x^2 - 4x + y^2 = 4 + x^2 - 4x + 25 + y^2 - 10y`
10y = 25
`y = 5/2`
y = 2.5
We know that the length of the equal sides is 3 units. So substituting the value of ‘y’ in equation for either ‘AC’ or ‘BC’ we can get the value of ‘x’.
`AC = sqrt((2 - x)^2 + (0 - y)^2)`
`3 = sqrt((2 -x)^2 + (-5/2)^2)`
Squaring on both sides,
`9 = 4 + x^2 - 4x + 25/4`
`5 = x^2 - 4x + 25/4`
`20 = 4x^2 - 16x + 25`
`-5 = 4x^2 - 16x`
We have a quadratic equation for ‘x’. Solving for roots of the above equation we have,
`4x^2 - 16x + 5 = 0
`x = (16+-sqrt(256 - 4(4)(5)))/8`
` = (16 +- sqrt176)/8`
`= (16 +- 4sqrt11)/8`
`x = 2 +- sqrt(11)/2`
Hence the possible co−ordinates of the third vertex of the isosceles triangle are `(2 + sqrt11/2, 5/2)` or `(2 - sqrt11/2, 5/2)`
RELATED QUESTIONS
On which axis do the following points lie?
Q(0, -2)
The coordinates of the point P are (−3, 2). Find the coordinates of the point Q which lies on the line joining P and origin such that OP = OQ.
Which point on the y-axis is equidistant from (2, 3) and (−4, 1)?
The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.
Find the third vertex of a triangle, if two of its vertices are at (−3, 1) and (0, −2) and the centroid is at the origin.
Find the value of x such that PQ = QR where the coordinates of P, Q and R are (6, -1), (1, 3) and (x, 8) respectively.
Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points (-2, -1), (1, 0), (4, 3) and(1, 2) meet
The points A(2, 0), B(9, 1) C(11, 6) and D(4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.
If A and B are (1, 4) and (5, 2) respectively, find the coordinates of P when AP/BP = 3/4.
Show that the following points are the vertices of a rectangle.
A (2, -2), B(14,10), C(11,13) and D(-1,1)
Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.
The line segment joining the points A(3,−4) and B(1,2) is trisected at the points P(p,−2) and Q `(5/3,q)`. Find the values of p and q.
If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.
In what ratio does y-axis divide the line segment joining the points (-4, 7) and (3, -7)?
If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.
If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.
Mark the correct alternative in each of the following:
The point of intersect of the coordinate axes is
If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.
Write the coordinates the reflections of points (3, 5) in X and Y -axes.
Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).
Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.
Write the ratio in which the line segment doining the points A (3, −6), and B (5, 3) is divided by X-axis.
If A (1, 2) B (4, 3) and C (6, 6) are the three vertices of a parallelogram ABCD, find the coordinates of fourth vertex D.
If the points A (1,2) , O (0,0) and C (a,b) are collinear , then find a : b.
The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is
If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =
The length of a line segment joining A (2, −3) and B is 10 units. If the abscissa of B is 10 units, then its ordinates can be
What is the form of co-ordinates of a point on the X-axis?
If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______
What are the coordinates of origin?
Point P(– 4, 2) lies on the line segment joining the points A(– 4, 6) and B(– 4, – 6).
Signs of the abscissa and ordinate of a point in the second quadrant are respectively.
A point both of whose coordinates are negative will lie in ______.
Points (1, –1) and (–1, 1) lie in the same quadrant.
The coordinates of a point whose ordinate is `-1/2` and abscissa is 1 are `-1/2, 1`.
Assertion (A): Mid-point of a line segment divides the line segment in the ratio 1 : 1
Reason (R): The ratio in which the point (−3, k) divides the line segment joining the points (− 5, 4) and (− 2, 3) is 1 : 2.