English

Verify which of the following is p.d.f. of r.v. X: f(x) = x, for 0 ≤ x ≤ 1 and -2 -x for 1 < x < 2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Verify which of the following is p.d.f. of r.v. X:

f(x) = x, for 0 ≤ x ≤ 1 and 2 - x for 1 < x < 2

Sum

Solution

f (x) ≥ 0

`int_0^2 f(x) dx = int_0^1 f(x) dx + int_1^2 f(x) dx`

 = `int_0^1 x dx + int_1^2 (2 - x) dx`

= `[x^2/2]_0^1 + [2x - x^2/2]_1^2 ` 

= `1^2/2 - 0^2/2 + (2 xx2 - 2^2/2) - (2 (1) - 1^2/2)`

= `1/2 - 0 + (4 - 2) - (2 - 1/2)  `

= `1/2 + 2 - 3/2`

= `-2/2 + 2`

= - 1+ 2

= 1

∴ f (x) is p.d.f

shaalaa.com
Probability Distribution of a Continuous Random Variable
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Exercise 7.2 [Page 238]

APPEARS IN

RELATED QUESTIONS

The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f 

`f(x) = {{:(1/10",", 25 ≤ x ≤ 35),(0",", "otherwise"):}`

What is the probability that preparation time exceeds 33 minutes? Also, find the c.d.f. of X.


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is non-negative


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is odd


Check whether the following is a p.d.f. 

f(x) = `{(x, "for"  0 ≤ x ≤ 1),(2 - x, "for"  1 < x ≤ 2.):}`


Check whether the following is a p.d.f.

f(x) = 2  for 0 < x < q.


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(X < 1.5),


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x,  "for" 0 ≤ x ≤ 2),(0,  "otherwise".):}`
Calculate : P(X ≤ 1)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise"):}`

Find the probability that waiting time is between 1 and 3 minutes.


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(–1 < X < 1)


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find expression for the c.d.f. of X.


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0,   "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)


Choose the correct alternative :

If p.m.f. of r.v.X is given below.

x 0 1 2
P(x) q2 2pq p2 

Then Var(X) = _______


State whether the following is True or False :

If f(x) = k x (1 – x) for 0 < x < 1 = 0 otherwise k = 12


State whether the following is True or False :

If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)


Solve the following problem :

Determine k if the p.d.f. of the r.v. is

f(x) = `{("ke"^(-thetax),  "for"  0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`


Solve the following problem :

The p.d.f. of the r.v. X is given by

f(x) = `{("k"/sqrt(x), "for"  0 < x < 4.),(0, "otherwise".):}`
Determine k, the c.d.f. of X, and hence find P(X ≤ 2) and P(X ≥ 1).


Solve the following problem :

Let X denote the reaction temperature in Celsius of a certain chemical process. Let X have the p. d. f.

f(x) = `{((1)/(10),  "for" -5 ≤ x < 5),(0, "otherwise".):}`
Compute P(X < 0).


The values of continuous r.v. are generally obtained by ______


State whether the following statement is True or False:

If f(x) = `{:("k"x  (1 - x)",", "for"  0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12


If r.v. X assumes the values 1, 2, 3, …….., 9 with equal probabilities, then E(X) = 5


State whether the following statement is True or False:

The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by

F(x) = `{:(0",",  "for all"  x ≤ "a"),( int_"a"^x  f(x) "d"x",",  "for all"  x ≥ "a"):}`


Find the c.d.f. F(x) associated with the following p.d.f. f(x)

f(x) = `{{:(3(1 - 2x^2)",", 0 < x < 1),(0",", "otherwise"):}`

Find `P(1/4 < x < 1/3)` by using p.d.f. and c.d.f.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×