English

State whether the following statement is True or False: If f(x) = kx (1-x),for 0<x<1=0,otherwiseis the p.d.f. of a r.v. X, then k = 12 - Mathematics and Statistics

Advertisements
Advertisements

Question

State whether the following statement is True or False:

If f(x) = `{:("k"x  (1 - x)",", "for"  0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12

Options

  • True

  • False

MCQ
True or False

Solution

False

shaalaa.com
Probability Distribution of a Continuous Random Variable
  Is there an error in this question or solution?
Chapter 2.8: Probability Distributions - Q.3

RELATED QUESTIONS

The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f 

`f(x) = {{:(1/10",", 25 ≤ x ≤ 35),(0",", "otherwise"):}`

What is the probability that preparation time exceeds 33 minutes? Also, find the c.d.f. of X.


Verify which of the following is p.d.f. of r.v. X:

f(x) = x, for 0 ≤ x ≤ 1 and 2 - x for 1 < x < 2


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise


Check whether the following is a p.d.f. 

f(x) = `{(x, "for"  0 ≤ x ≤ 1),(2 - x, "for"  1 < x ≤ 2.):}`


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x,  "for" 0 ≤ x ≤ 2),(0,  "otherwise".):}`
Calculate : P(X ≤ 1)


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2),  "for" -2 ≤ x ≤ 2),(0,  "otherwise".):}`
compute P(X > 0)


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find expression for the c.d.f. of X.


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)


If a r.v. X has p.d.f f(x) = `{("c"/x","  1 < x < 3"," "c" > 0),(0","  "otherwise"):}` 
Find c, E(X), and Var(X). Also Find F(x).


Choose the correct alternative :

If p.m.f. of r.v.X is given below.

x 0 1 2
P(x) q2 2pq p2 

Then Var(X) = _______


State whether the following is True or False :

If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`


Solve the following problem :

In the following probability distribution of a r.v.X.

x 1 2 3 4 5
P (x) `(1)/(20)` `(3)/(20)` a 2a `(1)/(20)`

Find a and obtain the c.d.f. of X.


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)


Solve the following problem :

Determine k if the p.d.f. of the r.v. is

f(x) = `{("ke"^(-thetax),  "for"  0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`


Solve the following problem :

The p.d.f. of the r.v. X is given by

f(x) = `{("k"/sqrt(x), "for"  0 < x < 4.),(0, "otherwise".):}`
Determine k, the c.d.f. of X, and hence find P(X ≤ 2) and P(X ≥ 1).


Solve the following problem :

Let X denote the reaction temperature in Celsius of a certain chemical process. Let X have the p. d. f.

f(x) = `{((1)/(10),  "for" -5 ≤ x < 5),(0, "otherwise".):}`
Compute P(X < 0).


The values of continuous r.v. are generally obtained by ______


If r.v. X assumes the values 1, 2, 3, …….., 9 with equal probabilities, then E(X) = 5


For the following probability density function of a random variable X, find P(|X| < 1).

`{:(f(x) = (x + 2)/18,";"  "for" -2 < x < 4),(               = 0,","  "otherwise"):}`


If the p.d.f. of X is

f(x) = `x^2/18,   - 3 < x < 3`

      = 0,        otherwise

Then P(X < 1) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×