Advertisements
Advertisements
Question
What is meant by the term bond order?
Solution
Bond order is defined as one-half of the difference between the number of electrons present in the bonding and anti-bonding orbitals of a molecule.
APPEARS IN
RELATED QUESTIONS
How do you express the bond strength in terms of bond order?
Compare the relative stability of the following species and indicate their magnetic properties;
`"O"_2, "O"_2^+, "O"_2^-`(superoxide), `"O"_2^(2-)`(peroxide)
Calculate the bond order of N2, O2, `"O"_2^+`and `"O"_2^-`?
Which of the following options represents the correct bond order?
Which of the following have identical bond order?
(i) \[\ce{CN-}\]
(ii) \[\ce{NO+}\]
(iii) \[\ce{O^{-}2}\]
(iv) \[\ce{O^{2-}2}\]
Species having same bond order are:
(i) \[\ce{N2}\]
(ii) \[\ce{N^{-}2}\]
(iii) \[\ce{F^{+}2}\]
(iv) \[\ce{O^{-}2}\]
Using molecular orbital theory, compare the bond energy and magnetic character of \[\ce{O^{+}2}\] and \[\ce{O^{-}2}\] species.
What is the effect of the following processes on the bond order in \[\ce{N2}\] and \[\ce{O2}\]?
(i) \[\ce{N2 -> N^{+}2 + e-}\]
(ii) \[\ce{O2 -> O^{+}2 + e-}\]
Match the species in Column I with the bond order in Column II.
Column I | Column II |
(i) \[\ce{NO}\] | (a) 1.5 |
(ii) \[\ce{CO}\] | (b) 2.0 |
(iii) \[\ce{O^{-}2}\] | (c) 2.5 |
(iv) \[\ce{O2}\] | (d) 3.0 |
Which of the following pair is expected to have the same bond order?
In which of the following pairs, the two species have identical bond order?