Advertisements
Advertisements
Question
What is the lower limit of the modal class of the following frequency distribution?
Age (in years) | 0 - 10 | 10- 20 | 20 -30 | 30 – 40 | 40 –50 | 50 – 60 |
Number of patients | 16 | 13 | 6 | 11 | 27 | 18 |
Solution
Here the maximum class frequency is 27, and the class corresponding to this frequency is 40-50 So the modal class is 40-50.
Now,
Modal class = 40-50, lower limit (/) of modal class = 40.
Thus, lower limit (/) of modal class is 40
APPEARS IN
RELATED QUESTIONS
The following table gives production yield per hectare of wheat of 100 farms of a village.
Production yield (in kg/ha) | 50 − 55 | 55 − 60 | 60 − 65 | 65 − 70 | 70 − 75 | 75 − 80 |
Number of farms | 2 | 8 | 12 | 24 | 38 | 16 |
Change the distribution to a more than type distribution and draw ogive.
The monthly profits (in Rs.) of 100 shops are distributed as follows:
Profits per shop: | 0 - 50 | 50 - 100 | 100 - 150 | 150 - 200 | 200 - 250 | 250 - 300 |
No. of shops: | 12 | 18 | 27 | 20 | 17 | 6 |
Draw the frequency polygon for it.
Draw a ‘more than’ ogive for the data given below which gives the marks of 100 students.
Marks | 0 – 10 | 10 – 20 | 20 – 30 | 30 - 40 | 40 – 50 | 50 – 60 | 60 – 70 | 70 – 80 |
No of Students | 4 | 6 | 10 | 10 | 25 | 22 | 18 | 5 |
The heights of 50 girls of Class X of a school are recorded as follows:
Height (in cm) | 135 - 140 | 140 – 145 | 145 – 150 | 150 – 155 | 155 – 160 | 160 – 165 |
No of Students | 5 | 8 | 9 | 12 | 14 | 2 |
Draw a ‘more than type’ ogive for the above data.
From the following data, draw the two types of cumulative frequency curves and determine the median:
Marks | Frequency |
140 – 144 | 3 |
144 – 148 | 9 |
148 – 152 | 24 |
152 – 156 | 31 |
156 – 160 | 42 |
160 – 164 | 64 |
164 – 168 | 75 |
168 – 172 | 82 |
172 – 176 | 86 |
176 – 180 | 34 |
The following frequency distribution gives the monthly consumption of electricity of 64 consumers of locality.
Monthly consumption (in units) | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 |
Number of consumers | 4 | 5 | 13 | 20 | 14 | 8 |
Form a ‘ more than type’ cumulative frequency distribution.
Calculate the missing frequency form the following distribution, it being given that the median of the distribution is 24
Age (in years) | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Number of persons |
5 | 25 | ? | 18 | 7 |
The mode of a frequency distribution can be determined graphically from ______.
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | Total |
Frequency | f1 | 5 | 9 | 12 | f2 | 3 | 2 | 40 |
For one term, absentee record of students is given below. If mean is 15.5, then the missing frequencies x and y are.
Number of days | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | TOTAL |
Total Number of students | 15 | 16 | x | 8 | y | 8 | 6 | 4 | 70 |