Advertisements
Advertisements
Question
What must be subtracted from 16x3 – 8x2 + 4x + 7 so that the resulting expression has 2x + 1 as a factor?
Solution
Let the number to be subtracted from the given polynomial be k
Let f(x) = 16x3 – 8x2 + 4x + 7 – k
It is given that (2x + 1) is a factor of f(x).
∴ `f(-1/2) = 0`
`=> 16(-1/2)^3 - 8(-1/2)^2 + 4(-1/2)+7 - k = 0`
`=> -16 xx 1/8 - 8 xx 1/4 -4 xx 1/2 + 7 - k = 0`
`=>` –2 – 2 – 2 + 7 – k = 0
`=>` – 6 + 7 – K = 0
`=>` 1 – k = 0
`=>` k = 1
Thus, 1 should be subtracted from the given polynomial.
APPEARS IN
RELATED QUESTIONS
If x3 + ax2 + bx + 6 has x – 2 as a factor and leaves a remainder 3 when divided by x – 3, find the values of a and b.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 − 19x + 6
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
Find the values of a and b when the factors of the polynomial f(x)= ax3 + bx2 + x a are (x+3) and (2x-1). Factorize the polynomial completely.
Use remainder theorem and find the remainder when the polynomial g(x) = x3 + x2 – 2x + 1 is divided by x – 3.
If p(x) = 4x3 - 3x2 + 2x - 4 find the remainderwhen p(x) is divided by:
x + 2
Find ‘a’ if the two polynomials ax3 + 3x2 – 9 and 2x3 + 4x + a, leaves the same remainder when divided by x + 3.
If on dividing 2x3 + 6x2 – (2k – 7)x + 5 by x + 3, the remainder is k – 1 then the value of k is
If x3 + 6x2 + kx + 6 is exactly divisible by (x + 2), then k = ?
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2