Advertisements
Advertisements
Question
Which of the following plots may represent the reactance of a series LC combination?
Solution
(d)
The reactance of a series LC circuit is given by,
`X = X_L - X_c = omegaL - 1/"omegaC"`
⇒ `X =2pi fL - 1/(2pifC) `
The correct relation between the reactance and f is represented by the graph in option (d).
`X = 0, "when" X_L = X_c`
Thus plot d represent the reactance of a series LC combination.
APPEARS IN
RELATED QUESTIONS
You are given three circuit elements X, Y and Z. When the element X is connected across an a.c. source of a given voltage, the current and the voltage are in the same phase. When the element Y is connected in series with X across the source, voltage is ahead of the current in phase by π/4 . But the current is ahead of the voltage in phase by π/4when Z is connected in series with X across the source. Identify the circuit elements X, Y and Z. When all the three elements are connected in series across the same source, determine the impedance of the circuit.Draw a plot of the current versus the frequency of applied source and mention the significance of this plot.
Three capacitors of capacities 8 μF, 8 μF and 4 μF are connected in a series and potential difference of 120 volt is maintained across the combination. Calculate the charge on capacitor of capacity 4 μF.
A capacitor of capacitance 0.5 μF is connected to a source of alternating e.m.f. of frequency 100 Hz. What is the capacitive reactance? (Π = 3.142)
A light bulb and a solenoid are connected in series across an ac source of voltage. Explain, how the glow of the light bulb will be affected when an iron rod is inserted in the solenoid.
A light bulb is rated at 100 W for a 220 V a.c. supply. Calculate the resistance of the bulb.
A light bulb is rated at 120 W for a 220 V a.c. supply. Calculate the resistance of the bulb.
A light bulb is rated at 125 W for a 250 V a.c. supply. Calculate the resistance of the bulb.
A light bulb is rated 100 W for 220 V ac supply of 50 Hz. Calculate
(i) The resistance of the bulb;
(ii) The rms current through the bulb.
An AC source is connected to a capacitor. Will the rms current increase, decrease or remain constant if a dielectric slab is inserted into the capacitor?
When the frequency of the AC source in an LCR circuit equals the resonant frequency, the reactance of the circuit is zero. Does it mean that there is no current through the inductor or the capacitor?
The reactance of a circuit is zero. It is possible that the circuit contains
(a) an inductor and a capacitor
(b) an inductor but no capacitor
(c) a capacitor but no inductor
(d) neither an inductor nor a capacitor
(i) An alternating emf of 200 V, 50 Hz is applied to an L-R ciruit, having a resistance R of 10 Ω and an inductance L of 0.05H connected in series. Calculate :
(1) Impedance
(2) Current flowing in the circuit
(ii) Draw a labelled graph showing the variation of inductive reactance (`X_L`) verses frequency (`f`) .
A coil having self-inductance of 0.7 H and resistance of 165 Ω is connected to an a.c. source of
275V,50Hz. If π = `22/7`
Calculate:
(i) Reactance of the coil
(ii) Impedance of the coil ‘
(iii) Current flowing through the coil
The potential difference across the resistor is 160 V and that across the inductor is 120 V. Find the effective value of the applied voltage. If the effective current in the circuit is 1⋅0 A, calculate the total impedance of the circuit.
A series combination of an inductor (L), capacitor (C) and a resistor (R) is connected across an ac source of emf of peak value E0, and angular frequency (ω). Plot a graph to show variation of impedance of the circuit with angular frequency (ω).