English

Write the equation of a plane which is at a distance of 5 √ 3 units from origin and the normal to which is equally inclined to coordinate axes. - Mathematics

Advertisements
Advertisements

Question

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

Solution

\[\text { Let } \alpha, \beta\text { and } \gamma\text {  be the angles made by } \vec{n} withx, y andz-axes, respectively.\]

\[It is given that\]

\[\alpha = \beta = \gamma\]

\[ \Rightarrow \cos\alpha = \cos\beta = \cos\gamma\]

\[ \Rightarrow l = m = n, wherel, m, n\text {  are direction cosines of } \vec{n} .\]

\[\text { But } l^2 + m^2 + n^2 = 1\]

\[ \Rightarrow l^2 + l^2 + l^2 = 1\]

\[ \Rightarrow 3 l^2 = 1\]

\[ \Rightarrow l^2 = \frac{1}{3}\]

\[ \Rightarrow l = \frac{1}{\sqrt{3}}\]

\[\text { So },l = m = n = \frac{1}{\sqrt{3}}\]

\[\text { It is given that the length of the perpendicular of the plane from the origin },p= 5\sqrt{3}\]

\[\text { The normal form of the plane is }lx + my + nz = p\]

\[ \Rightarrow \frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = 5\sqrt{3}\]

\[ \Rightarrow x + y + z = 5\sqrt{3} \left( \sqrt{3} \right) \]

\[ \Rightarrow x + y + z = 15\]

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

RELATED QUESTIONS

Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C(5, 3, −3).


Find the equation of the planes parallel to the plane x + 2y+ 2z + 8 =0 which are at the distance of 2  units from the point (1,1, 2)


Find the distance of a point (2, 5, −3) from the plane `vec r.(6hati-3hatj+2 hatk)=4`


Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0. Also find the distance of the plane, obtained above, from the origin.


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                    Plane
(0, 0, 0)           3x – 4y + 12 z = 3


In the given cases, find the distance of each of the given points from the corresponding given plane

Point                   Plane

(3, – 2, 1)             2x – y + 2z + 3 = 0


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                 Plane

(2, 3, – 5)           x + 2y – 2z = 9


Find the distance of the point (−1, −5, −­10) from the point of intersection of the line `vecr = 2hati -hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr.(hati -hatj + hatk) = 5`.


Show that the points (1, –1, 3) and (3, 4, 3) are equidistant from the plane 5x + 2y – 7z + 8 = 0


Find the distance of the point (1, 2, –1) from the plane x - 2y + 4z - 10 = 0 .


Find the distance of the point  \[2 \hat{i} - \hat{j} - 4 \hat{k}\]  from the plane  \[\vec{r} \cdot \left( 3 \hat{i}  - 4 \hat{j}  + 12 \hat{k}  \right) - 9 = 0 .\]


Find the distance of the point (2, 3, −5) from the plane x + 2y − 2z − 9 = 0.

 

Find the equations of the planes parallel to the plane x + 2y − 2z + 8 = 0 that are at a distance of 2 units from the point (2, 1, 1).

 

Show that the points (1, 1, 1) and (−3, 0, 1) are equidistant from the plane 3x + 4y − 12z + 13 = 0.

 

Find the equations of the planes parallel to the plane x − 2y + 2z − 3 = 0 and which are at a unit distance from the point (1, 1, 1).

 

Find the distance of the point (3, 3, 3) from the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 2 \hat{j}  - 7k \right) + 9 = 0\]

 

Find an equation for the set of all points that are equidistant from the planes 3x − 4y + 12z = 6 and 4x + 3z = 7.

 

Find the distance between the parallel planes 2x − y + 3z − 4 = 0 and 6x − 3y + 9z + 13 = 0.


Find the equation of the plane which passes through the point (3, 4, −1) and is parallel to the plane 2x − 3y + 5z + 7 = 0. Also, find the distance between the two planes.

 

Find the equation of the plane mid-parallel to the planes 2x − 2y + z + 3 = 0 and 2x − 2y + z + 9 = 0.

 

The distance between the planes 2x + 2y − z + 2 = 0 and 4x + 4y − 2z + 5 = 0 is 

 

 

 

 
 

The image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0 is


If a plane passes through the point (1, 1, 1) and is perpendicular to the line \[\frac{x - 1}{3} = \frac{y - 1}{0} = \frac{z - 1}{4}\] then its perpendicular distance from the origin is ______.


Write the coordinates of the point which is the reflection of the point (α, β,  γ) in the XZ-plane.


Find the distance of the point `4hat"i" - 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" - 6hat"k")` = 21.


Find the distance of the point (1, 1 –1) from the plane 3x +4y – 12z + 20 = 0.


Solve the following:

Find the distance of the point `3hat"i" + 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" + 6hat"k")` = 21.


The perpendicular distance of the origin from the plane x − 3y + 4z = 6 is ______ 


If the foot of perpendicular drawn from the origin to the plane is (3, 2, 1), then the equation of plane is ____________.


Find the distance of the point whose position vector is `(2hat"i" + hat"j" - hat"k")` from the plane `vec"r" * (hat"i" - 2hat"j" + 4hat"k")` = 9


Find the distance of the point (– 2, 4, – 5) from the line `(x + 3)/3 = (y - 4)/5 = (z + 8)/6`


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


S and S are the focii of the ellipse `x^2/a^2 + y^2/b^2 - 1` whose one of the ends of the minor axis is the point B If ∠SBS' = 90°, then the eccentricity of the ellipse is


A metro train starts from rest and in 5 s achieves 108 km/h. After that it moves with constant velocity and comes to rest after travelling 45 m with uniform retardation. If total distance travelled is 395 m, find total time of travelling.


The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs ₹ 48 per hour at 16 miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to ₹ 300 per hour is


`phi` is the angle of the incline when a block of mass m just starts slipping down. The distance covered by the block if thrown up the incline with an initial speed u0 is


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are


The equations of motion of a rocket are:
x = 2t,y = –4t, z = 4t, where the time t is given in seconds, and the coordinates of a ‘moving point in km. What is the path of the rocket? At what distances will the rocket be from the starting point O(0, 0, 0) and from the following line in 10 seconds? `vecr = 20hati - 10hatj + 40hatk + μ(10hati - 20hatj + 10hatk)`


If the distance of the point (1, 1, 1) from the plane x – y + z + λ = 0 is `5/sqrt(3)`, find the value(s) of λ.


Find the coordinates of points on line `x/1 = (y - 1)/2 = (z + 1)/2` which are at a distance of `sqrt(11)` units from origin.


The distance of the point `2hati + hatj - hatk` from the plane `vecr.(hati - 2hatj + 4hatk)` = 9 will be ______.


Find the equations of the planes parallel to the plane x – 2y + 2z – 4 = 0 which is a unit distance from the point (1, 2, 3).


In the figure given below, if the coordinates of the point P are (a, b, c), then what are the perpendicular distances of P from XY, YZ and ZX planes respectively?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×