English

Find the distance of a point (2, 5, −3) from the plane - Mathematics

Advertisements
Advertisements

Question

Find the distance of a point (2, 5, −3) from the plane `vec r.(6hati-3hatj+2 hatk)=4`

Solution

Consider the vector equation of the plane.

`vec r.(6hati-3hatj+2 hatk)=4`

`=>(xhati+yhatj+zhatk).(6hati-3hatj+2hatk)=4`

6x-3y+2z=4

6x-3y+2z-4=0

Thus the Cartesian equation of the plane is

6x-3y+2z-4= 0
Let d be the distance between the point (2,5,-3) to the plane

Thus, `d=|(ax_1+by_1+cz_1+d)/(sqrt(a^2+b^2+c^2))|`

`=>d=|(6xx2-3xx5+2xx(-3)-4)/(sqrt(6^2+(-3)^2+2^2))|`

`=>d=|(12-15-6-4)/sqrt(36+9+4)|`

`=>d=|(-13)/sqrt49|`

`=>d=13/7 units`

 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Panchkula Set 1

RELATED QUESTIONS

In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                    Plane
(0, 0, 0)           3x – 4y + 12 z = 3


In the given cases, find the distance of each of the given points from the corresponding given plane

Point                   Plane

(3, – 2, 1)             2x – y + 2z + 3 = 0


Find the distance of the point (−1, −5, −­10) from the point of intersection of the line `vecr = 2hati -hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr.(hati -hatj + hatk) = 5`.


Show that the points (1, –1, 3) and (3, 4, 3) are equidistant from the plane 5x + 2y – 7z + 8 = 0


Find the distance of the point (1, 2, –1) from the plane x - 2y + 4z - 10 = 0 .


Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.


Find the distance of the point  \[2 \hat{i} - \hat{j} - 4 \hat{k}\]  from the plane  \[\vec{r} \cdot \left( 3 \hat{i}  - 4 \hat{j}  + 12 \hat{k}  \right) - 9 = 0 .\]


Find the equations of the planes parallel to the plane x − 2y + 2z − 3 = 0 and which are at a unit distance from the point (1, 1, 1).

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured parallel to the line whose direction cosines are proportional to 2, 3, −6.


Find an equation for the set of all points that are equidistant from the planes 3x − 4y + 12z = 6 and 4x + 3z = 7.

 

Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C (5, 3, −3). 


Find the distance of the point (1, -2, 4) from plane passing throuhg the point (1, 2, 2) and perpendicular of the planes x - y + 2z = 3 and 2x - 2y + z + 12 = 0 


Find the distance between the parallel planes 2x − y + 3z − 4 = 0 and 6x − 3y + 9z + 13 = 0.


Find the equation of the plane which passes through the point (3, 4, −1) and is parallel to the plane 2x − 3y + 5z + 7 = 0. Also, find the distance between the two planes.

 

Find the equation of the plane mid-parallel to the planes 2x − 2y + z + 3 = 0 and 2x − 2y + z + 9 = 0.

 

Find the distance between the planes \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + 7 = 0 \text{ and } \vec{r} \cdot \left( 2 \hat{i}  + 4 \hat{j}  + 6 \hat{k}  \right) + 7 = 0 .\]

 

The distance between the planes 2x + 2y − z + 2 = 0 and 4x + 4y − 2z + 5 = 0 is 

 

 

 

 
 

The image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0 is


 The distance between the point (3, 4, 5) and the point where the line \[\frac{x - 3}{1} = \frac{y - 4}{2} = \frac{z - 5}{2}\] meets the plane x + y + z = 17 is

If a plane passes through the point (1, 1, 1) and is perpendicular to the line \[\frac{x - 1}{3} = \frac{y - 1}{0} = \frac{z - 1}{4}\] then its perpendicular distance from the origin is ______.


Write the coordinates of the point which is the reflection of the point (α, β,  γ) in the XZ-plane.


Find the distance of the point `4hat"i" - 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" - 6hat"k")` = 21.


Find the distance of the point (1, 1 –1) from the plane 3x +4y – 12z + 20 = 0.


The equation of the plane passing through (3, 1, 2) and making equal intercepts on the coordinate axes is _______.


The equations of planes parallel to the plane x + 2y + 2z + 8 = 0, which are at a distance of 2 units from the point (1, 1, 2) are ________.


If the foot of perpendicular drawn from the origin to the plane is (3, 2, 1), then the equation of plane is ____________.


Find the distance of the point whose position vector is `(2hat"i" + hat"j" - hat"k")` from the plane `vec"r" * (hat"i" - 2hat"j" + 4hat"k")` = 9


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/ϒ` = 3


Find the distance of a point (2, 4, –1) from the line `(x + 5)/1 = (y + 3)/4 = (z - 6)/(-9)`


Which one of the following statements is correct for a moving body?


S and S are the focii of the ellipse `x^2/a^2 + y^2/b^2 - 1` whose one of the ends of the minor axis is the point B If ∠SBS' = 90°, then the eccentricity of the ellipse is


A stone is dropped from the top of a cliff 40 m high and at the same instant another stone is shot vertically up from the foot of the cliff with a velocity 20 m per sec. Both stones meet each other after


A metro train starts from rest and in 5 s achieves 108 km/h. After that it moves with constant velocity and comes to rest after travelling 45 m with uniform retardation. If total distance travelled is 395 m, find total time of travelling.


The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs ₹ 48 per hour at 16 miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to ₹ 300 per hour is


`phi` is the angle of the incline when a block of mass m just starts slipping down. The distance covered by the block if thrown up the incline with an initial speed u0 is


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are


The acute angle between the line `vecr = (hati + 2hatj + hatk) + λ(hati + hatj + hatk)` and the plane `vecr xx (2hati - hatj + hatk)` is ______.


Find the coordinates of points on line `x/1 = (y - 1)/2 = (z + 1)/2` which are at a distance of `sqrt(11)` units from origin.


If the points (1, 1, λ) and (–3, 0, 1) are equidistant from the plane `barr*(3hati + 4hatj - 12hatk) + 13` = 0, find the value of λ.


The distance of the point `2hati + hatj - hatk` from the plane `vecr.(hati - 2hatj + 4hatk)` = 9 will be ______.


Find the equations of the planes parallel to the plane x – 2y + 2z – 4 = 0 which is a unit distance from the point (1, 2, 3).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×