English

The Distance Between the Point (3, 4, 5) and the Point Where the Line X − 3 1 = Y − 4 2 = Z − 5 2 Meets the Plane X + Y + Z = 17 is (A) 1 (B) 2 (C) 3 (D) None of These - Mathematics

Advertisements
Advertisements

Question

 The distance between the point (3, 4, 5) and the point where the line \[\frac{x - 3}{1} = \frac{y - 4}{2} = \frac{z - 5}{2}\] meets the plane x + y + z = 17 is

Options

  •  1

  • 2

  •  3

  • None of these

     
MCQ

Solution

 3

\[\text{ The coordinates of any point on the given line are of the form } \]
\[\frac{x - 3}{1} = \frac{y - 4}{2} = \frac{z - 5}{2} = \lambda\]
\[ \Rightarrow x = \lambda + 3; y = 2\lambda + 4; z = 2\lambda + 5\]
\[\text{ So, the coordiantes of the point on the given line are } \left( \lambda + 3, 2\lambda + 4, 2\lambda + 5 \right). \text{ This point lies on the plane } ,\]
\[ x + y + z = 17\]
\[ \Rightarrow \lambda + 3 + 2\lambda + 4 + 2\lambda + 5 = 17 \]
\[ \Rightarrow 5\lambda = 5\]
\[ \Rightarrow \lambda = 1\]
\[\text{ So, the coordinates of the point are} \]
\[\left( \lambda + 3, 2\lambda + 4, 2\lambda + 5 \right)\]
\[ = \left( 1 + 3, 2 \left( 1 \right) + 4, 2 \left( 1 \right) + 5 \right)\]
\[ = \left( 4, 6, 7 \right)\]
\[\text{ Now, the distance between the points} \left( 4, 6, 7 \right)\text{ and } \left( 3, 4, 5 \right)\text{ is } \]
\[\sqrt{\left( 3 - 4 \right)^2 + \left( 4 - 6 \right)^2 + \left( 5 - 7 \right)^2}\]
\[ = \sqrt{1 + 4 + 4}\]
\[ = 3 \text{ units } \]

So, the answer is (c).

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - MCQ [Page 85]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
MCQ | Q 12 | Page 85

RELATED QUESTIONS

Show that the points (1, 1, 1) and (-3, 0, 1) are equidistant from the plane `bar r (3bari+4barj-12bark)+13=0`


Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C(5, 3, −3).


Find the equation of the planes parallel to the plane x + 2y+ 2z + 8 =0 which are at the distance of 2  units from the point (1,1, 2)


Find the distance of a point (2, 5, −3) from the plane `vec r.(6hati-3hatj+2 hatk)=4`


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point                    Plane
(0, 0, 0)           3x – 4y + 12 z = 3


In the given cases, find the distance of each of the given points from the corresponding given plane.

Point              Plane

(– 6, 0, 0)        2x – 3y + 6z – 2 = 0


Find the distance of the point (−1, −5, −­10) from the point of intersection of the line `vecr = 2hati -hatj + 2hatk + lambda(3hati + 4hatj + 2hatk)` and the plane `vecr.(hati -hatj + hatk) = 5`.


Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is

(A) 2 units

(B) 4 units

(C) 8 units

(D)`2/sqrt29 "units"`


Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.


Find the distance of the point  \[2 \hat{i} - \hat{j} - 4 \hat{k}\]  from the plane  \[\vec{r} \cdot \left( 3 \hat{i}  - 4 \hat{j}  + 12 \hat{k}  \right) - 9 = 0 .\]


Show that the points \[\hat{i}  - \hat{j}  + 3 \hat{k}  \text{ and }  3 \hat{i}  + 3 \hat{j}  + 3 \hat{k} \] are equidistant from the plane \[\vec{r} \cdot \left( 5 \hat{i}  + 2 \hat{j}  - 7 \hat{k}  \right) + 9 = 0 .\]

  

Find the distance of the point (2, 3, −5) from the plane x + 2y − 2z − 9 = 0.

 

Find the equations of the planes parallel to the plane x + 2y − 2z + 8 = 0 that are at a distance of 2 units from the point (2, 1, 1).

 

Show that the points (1, 1, 1) and (−3, 0, 1) are equidistant from the plane 3x + 4y − 12z + 13 = 0.

 

Find the equations of the planes parallel to the plane x − 2y + 2z − 3 = 0 and which are at a unit distance from the point (1, 1, 1).

 

Find the distance of the point (2, 3, 5) from the xy - plane.

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured parallel to the line whose direction cosines are proportional to 2, 3, −6.


If the product of the distances of the point (1, 1, 1) from the origin and the plane x − y + z+ λ = 0 be 5, find the value of λ.


Find an equation for the set of all points that are equidistant from the planes 3x − 4y + 12z = 6 and 4x + 3z = 7.

 

Find the distance between the point (7, 2, 4) and the plane determined by the points A(2, 5, −3), B(−2, −3, 5) and C (5, 3, −3). 


Find the distance of the point (1, -2, 4) from plane passing throuhg the point (1, 2, 2) and perpendicular of the planes x - y + 2z = 3 and 2x - 2y + z + 12 = 0 


Find the distance between the parallel planes 2x − y + 3z − 4 = 0 and 6x − 3y + 9z + 13 = 0.


Find the equation of the plane mid-parallel to the planes 2x − 2y + z + 3 = 0 and 2x − 2y + z + 9 = 0.

 

Find the distance between the planes \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + 7 = 0 \text{ and } \vec{r} \cdot \left( 2 \hat{i}  + 4 \hat{j}  + 6 \hat{k}  \right) + 7 = 0 .\]

 

The distance between the planes 2x + 2y − z + 2 = 0 and 4x + 4y − 2z + 5 = 0 is 

 

 

 

 
 

The distance of the line \[\vec{r} = 2 \hat{i} - 2 \hat{j} + 3 \hat{k} + \lambda\left( \hat{i} - \hat{j}+ 4 \hat{k}  \right)\]  from the plane \[\vec{r} \cdot \left( \hat{i} + 5 \hat{j} + \hat{k} \right) = 5\] is

 


If a plane passes through the point (1, 1, 1) and is perpendicular to the line \[\frac{x - 1}{3} = \frac{y - 1}{0} = \frac{z - 1}{4}\] then its perpendicular distance from the origin is ______.


Write the coordinates of the point which is the reflection of the point (α, β,  γ) in the XZ-plane.


Solve the following:

Find the distance of the point `3hat"i" + 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" + 6hat"k")` = 21.


Solve the following :

Find the distance of the point (13, 13, – 13) from the plane 3x + 4y – 12z = 0.


The equation of the plane passing through (3, 1, 2) and making equal intercepts on the coordinate axes is _______.


Find the distance of the point whose position vector is `(2hat"i" + hat"j" - hat"k")` from the plane `vec"r" * (hat"i" - 2hat"j" + 4hat"k")` = 9


Find the coordinates of the point where the line through (3, – 4, – 5) and (2, –3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, –1, 0)


A plane meets the co-ordinates axis in A, B, C such that the centroid of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is `x/alpha + y/beta + z/ϒ` = 3


The distance of the plane `vec"r" *(2/7hat"i" + 3/4hat"j" - 6/7hat"k")` = 1 from the origin is ______.


Find the equation of the plane passing through the point (1, 1, 1) and is perpendicular to the line `("x" - 1)/3 = ("y" - 2)/0 = ("z" - 3)/4`. Also, find the distance of this plane from the origin.


Find the foot of the perpendicular from the point (1, 2, 0) upon the plane x – 3y + 2z = 9. Hence, find the distance of the point (1, 2, 0) from the given plane.


S and S are the focii of the ellipse `x^2/a^2 + y^2/b^2 - 1` whose one of the ends of the minor axis is the point B If ∠SBS' = 90°, then the eccentricity of the ellipse is


The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs ₹ 48 per hour at 16 miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to ₹ 300 per hour is


The equations of motion of a rocket are:
x = 2t,y = –4t, z = 4t, where the time t is given in seconds, and the coordinates of a ‘moving point in km. What is the path of the rocket? At what distances will the rocket be from the starting point O(0, 0, 0) and from the following line in 10 seconds? `vecr = 20hati - 10hatj + 40hatk + μ(10hati - 20hatj + 10hatk)`


Find the distance of the point (2, 3, 4) measured along the line `(x - 4)/3 = (y + 5)/6 = (z + 1)/2` from the plane 3x + 2y + 2z + 5 = 0.


If the distance of the point (1, 1, 1) from the plane x – y + z + λ = 0 is `5/sqrt(3)`, find the value(s) of λ.


The acute angle between the line `vecr = (hati + 2hatj + hatk) + λ(hati + hatj + hatk)` and the plane `vecr xx (2hati - hatj + hatk)` is ______.


If the points (1, 1, λ) and (–3, 0, 1) are equidistant from the plane `barr*(3hati + 4hatj - 12hatk) + 13` = 0, find the value of λ.


In the figure given below, if the coordinates of the point P are (a, b, c), then what are the perpendicular distances of P from XY, YZ and ZX planes respectively?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×