Advertisements
Advertisements
Question
(x + y)3 − (x − y)3 can be factorized as
Options
2y (3x2 + y2)
2x (3x2 + y2)
2y (3y2 + x2)
2x (x2+ 3y2)
Solution
The given expression to be factorized is
(x + y)3 − (x − y)3
Recall the formula for difference of two cubes `a^3 -b^3 = (a-b)(a^2 +ab +b^2)`
Using the above formula, we have,
`(x+y)^3 - (x-y)^3`
` = {(x+y) - (x-y)} {(x+y)^2 + (x+y).(x-y) + (x-y)^3}`
` = (x+y - x +y)[{(x)^2 + 2x.y + (y)^2} + (x^2 -y^2) + {x^2 -y^2}+{(x)^2 -2x.y +(y)^2}]`
` = 2y(x^2 + 2 xy + y^2 +x^2 - y^2 +x^2 - 2xy + y^2)`
` = 2y (3x^2 + y^2)`
The given expression to be factorized is
(x + y)3 − (x − y)3
Recall the formula for difference of two cubes `a^3 -b^3 = (a-b)(a^2 +ab +b^2)`
Using the above formula, we have,
= (x + y)3 − (x − y)3
= `{(x+y) - (x-y)}{(x+y)^2 + (x+y).(x-y)+ (x-y)^2}`
`= (x+y - x+y)[{(x)^2 + 2x.y + (y)^2} + (x^2 - y^2)+ {(x)^2 - 2.x.y + (y^2)}]`
`=2y (x^2 + 2xy + y^2 +x^2 - y^2 + x^2 - 2xy +y^2)`
` = 2y (3x^2 + y^2)`
APPEARS IN
RELATED QUESTIONS
Factorize: x3 + x - 3x2 - 3
Factorize `[x^2 + 1/x^2] - 4[x + 1/x] + 6`
Factorize `x^2 - sqrt3x - 6`
(2x - 3y)3 + (4z - 2x)3 + (3y - 4z )3
If x + y = 4 and xy = 2, find the value of x2 + y2
If x2 + y2 = 29 and xy = 2, find the value of x - y.
If a2 + b2 + c2 = 250 and ab + bc + ca = 3, find a + b + c.
Evaluate: - 4y (15 + 12y - 8z) (x - 2y)
Divide: - 16ab2c by 6abc
Divide: 6x3 + 5x2 − 21x + 10 by 3x − 2